Advertisement

通过雅可比迭代法和赛德尔迭代法,对线性方程组Ax=b进行求解。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
采用雅可比迭代法和赛德尔迭代法对线性方程组Ax=b进行求解,其中矩阵A定义为A=[-8 1 1;1 -5 1;1 1 -4],向量b为b=[1 16 7],并设定初始解x(0)为(0,0,0),要求计算结果的精度达到0.001。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 利用线Ax=b
    优质
    本研究探讨了通过雅可比迭代法与赛德尔迭代法求解线性方程组Ax=b的有效性和收敛性,旨在为实际问题提供高效的数值解法。 使用雅可比迭代法与赛德尔迭代法求解线性方程组Ax=b,其中A=[-8 1 1;1 -5 1;1 1 -4],b=[1 16 7],初始量x(0)=(0,0,0),精确到小数点后三位。
  • 使用MATLAB实现与高斯-塞Ax=b问题
    优质
    本项目采用MATLAB编程,实现了雅可比迭代法和高斯-塞德尔迭代法解决线性方程组Ax=b的问题,并对比了两种方法的收敛速度及效率。 使用雅克比迭代法和高斯-赛德尔迭代法求解方程组,并精确到小数点后6位,分别给出相应的计算结果。
  • 使用、高斯-、SOR及追赶线
    优质
    本研究探讨了利用四种不同方法(包括雅克比迭代法、高斯-赛德尔迭代法、松弛过度剩余(SOR)法以及追赶法)来有效解决线性代数中方程组问题的技巧和效率。 高斯-赛德尔迭代法相较于雅克比迭代法,在大多数情况下需要的迭代次数更少,因此可以认为其收敛速度更快、效率更高。然而,并非总是如此,有时会出现雅克比方法能够收敛而高斯-赛德尔方法无法收敛的情况。 对于SOR(Successive Over Relaxation)方法而言,通过调整松弛因子可以使迭代次数发生变化。选择合适的松弛因子时,该方法也能达到较快的收敛速度。
  • 与高斯-.zip
    优质
    本资料介绍了两种重要的线性方程组求解方法——雅可比迭代法和高斯-赛德尔迭代法。通过对比分析,帮助读者理解这两种算法的特点及应用场景。 Jacobi-雅可比迭代法与高斯-赛德尔迭代法的迭代次数可以自行设置。
  • 牛顿、二分高斯-
    优质
    简介:本内容聚焦于数值分析中求解非线性方程及线性方程组的经典方法,包括精度与效率各异的牛顿迭代法、二分法、雅可比迭代和高斯-赛德尔迭代。 请提供包含牛顿迭代法、对分法、雅可比迭代以及高斯赛德尔迭代的完整代码。其中,用户可以自行输入多项式的次数及精度,并能查看到每次迭代过程中的数值与最终结果。该程序支持包括对数函数、指数函数和幂函数在内的多种数学表达式输入。
  • 与高斯-塞
    优质
    本文介绍了雅可比迭代法和高斯-塞德尔迭代法两种重要的数值计算方法,探讨了它们在求解线性方程组中的应用及各自的特点。 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的常用数值方法。这两种方法都基于将系数矩阵分解为对角、下三角和上三角三部分,然后通过逐次逼近的方式进行计算。其中,雅可比迭代法在每次迭代时使用前一次迭代的所有值来更新当前未知数;而高斯-塞德尔迭代法则利用已得到的新解即时替代旧的估计值来进行后续变量的求解,因此通常收敛速度更快一些。这两种方法各有优缺点,在实际应用中选择哪种取决于具体问题的特点和需求。
  • 用MATLAB线
    优质
    本文章介绍了使用MATLAB软件来解决非线性方程组的一种数值分析技术——雅可比迭代法,并提供了具体实现步骤和代码示例。 使用牛顿法求解非线性方程组的雅可比迭代方法在Matlab中的代码实现。
  • 利用MATLAB的线
    优质
    本项目运用MATLAB编程实现雅可比迭代算法,针对非线性方程组进行数值求解,分析其收敛特性及应用范围。 利用Jacobi迭代法求解非线性方程组Ax=b,在系数矩阵A为严格对角占优或不可约对角占优的情况下适用。该方法包含详细注释,适合初学者阅读。
  • 线的MATLAB课设计
    优质
    本课程设计采用雅可比迭代法,利用MATLAB编程语言求解大型稀疏线性方程组,旨在探究该方法的实现过程及其收敛特性。 雅克比迭代求解线性方程组的MATLAB课程设计已经调试成功。
  • 线(MATLAB)- 线.rar
    优质
    本资源提供了使用MATLAB实现多种迭代方法求解线性方程组的代码和示例,包括雅可比、高斯-赛德尔等算法。适合学习与研究。 Matlab解线性方程组的迭代法 分享内容包括: - 解线性方程组的迭代方法相关资料 - 包含Figure6.jpg在内的附件文件