Advertisement

5V、3.3V和3V稳压电路

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于设计和优化5V、3.3V及3V的稳压电路方案,旨在提供高效稳定的电压输出,适用于各种电子设备。 5V和3.3V稳压电路比较常见,而3.0V的稳压电路则较难找到。因此,我将自己发现并正在使用的三级稳压电路打包分享出来,希望能对同行有所帮助。压缩包内包含五个文件:一张稳压电路原理图以及该原理图中所用到的三个稳压芯片的PDF资料(LM7805中英文资料、AP1117和PAM3101)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 5V3.3V3V
    优质
    本项目专注于设计和优化5V、3.3V及3V的稳压电路方案,旨在提供高效稳定的电压输出,适用于各种电子设备。 5V和3.3V稳压电路比较常见,而3.0V的稳压电路则较难找到。因此,我将自己发现并正在使用的三级稳压电路打包分享出来,希望能对同行有所帮助。压缩包内包含五个文件:一张稳压电路原理图以及该原理图中所用到的三个稳压芯片的PDF资料(LM7805中英文资料、AP1117和PAM3101)。
  • 源(可输出±15V、+5V +3V 直流
    优质
    这款稳定电源设备能够提供精准稳定的±15V、+5V和+3V直流电输出,适用于各种电子实验及小型电路测试需求。 此电源电路能够输出+-15V、+5V 和 +3V 的直流电压,并包含各芯片的实用资料,包括7815、7918 和 LM317。此外,它还具有多个电源输出端口,便于向外部电路供电。
  • 3.7V至3.3V5V3.3V的升ICLDO
    优质
    本产品是一款高效的电压转换芯片,适用于从3.7V或5V降至稳定的3.3V输出,集升压与线性稳压功能于一体,广泛应用于各类电子设备中。 在电子设计领域,电源管理至关重要,特别是在需要不同电压等级的设备上。本段落将详细探讨如何从3.7V或5V输入电压转换到3.3V输出电压,并介绍涉及升降压IC和LDO稳压芯片的相关知识。 对于3.7V转3.3V以及5V转3.3V的电源管理,主要有三种方法:使用升降压芯片、单降压芯片及LDO稳压器。选择哪一种取决于应用场景的具体需求,如输入电压范围、输出电流大小、效率和功耗等。 1. **升降压IC**:这种类型的集成电路可以处理广泛的输入电压变化,并且能够从较高或较低的输入电压转换到3.3V输出。例如,PW5410B适用于小电流应用,在1.8V至5V范围内工作;而PW2228A和PW2224则能提供更大的电流支持(最高可达3A),并且允许调整输出电压。 2. **单降压IC**:当输入电压高于目标输出电压时,比如从5V降到3.3V,则使用降压芯片更为合适。例如,PW2057、WP2052和PW2051等都是常见的选择,它们有不同的电流规格和封装形式;PW2058则提供可调的输出电压及更高的电流能力。 3. **LDO稳压器**:当需要较低噪声或输入电压接近目标输出时,线性稳压器(LDO)是理想的选择。例如PW6566、PW6218和PW6206等芯片可以提供多种固定或可调的电压选项,并且具有低静态功耗特性。 在选择这些电源管理IC时,请考虑以下因素: - **输入电压范围**:确保所选芯片能够适应实际应用中的所有可能电压变化。 - **输出电流需求**:根据负载来挑选合适的电流规格。 - **效率要求**:高效转换器可以减少能量损失,尤其适用于大功率应用场景。 - **封装尺寸和布局限制**:选择符合电路板空间的合适封装形式。 - **工作温度稳定性**:确保芯片能在预期的操作环境中正常运行。 - **热管理需求**:对于高功耗应用可能需要额外考虑散热设计。 具体而言,在3.7V锂电池供电系统中,由于电池电压范围为3V至4.2V,使用升降压IC可以保证在不同充电状态下提供稳定的3.3V输出。而对于5V输入电源,如果其稳定度足够,则直接采用降压芯片即可;若需要应对更广泛的输入电压变化,则应选择PW2162和PW2163等支持更大范围的降压芯片。 总而言之,在进行从3.7V或5V到3.3V转换的设计时,需综合考虑系统需求、性能指标及成本因素。正确应用这些电源管理IC不仅能确保设备正常运行,还能优化系统的能效与稳定性。
  • 输出直流源(±12V、±5V3.3V
    优质
    本产品是一款多功能直流稳压电源,提供±12V、±5V及3.3V三种稳定电压输出,适用于电子实验与设备供电。 在实验室和电子设计中常用的线性直流稳压电源可以将12伏特的电压转换为5伏特的电压。原理图文件通常命名为SchDoc。
  • 12V转5V及12V转3.3V芯片图.pdf
    优质
    本PDF文档提供了详细的电路设计和参数配置,帮助用户实现从12V电压转换为5V及3.3V稳定的输出电压,适用于电子设备电源供应方案。 提供12V转5V降压芯片、12V转3.3V稳压芯片以及多种LDO和DC-DC降压解决方案,共计二十多款产品选择。
  • 24V转5V3.3V3V的线性LDODC-DC降芯片
    优质
    本产品是一款高效的电压转换解决方案,包含线性LDO和DC-DC降压芯片,能够将24V电源稳定转化为5V、3.3V或3V输出,适用于各种低功耗电子设备。 在电子设计领域,电源转换是至关重要的环节,特别是在各种设备中需要从较高电压转换为较低电压以满足不同组件的工作需求。题目中提到的24V转5V, 24V转3.3V, 24V转3V线性LDO和DC降压芯片就是关于这种电压转换技术的讨论。 线性LDO(低压差线性稳压器)是一种简单且成本相对较低的电压转换方法。LDO能在输入电压与输出电压之间保持较小的压差,通常适用于电流需求不高、对效率要求不严苛的场合。例如,PW6206是一款能提供3V、3.3V和5V输出的LDO,其最大输入电压可达40V,静态电流低至4uA,并采用SOT23-3封装,适合空间受限的应用场景。 然而,在需要更大电流输出或者效率更为关键的情况下,DC-DC降压芯片(Buck Converter)成为更好的选择。这类转换器通过开关方式实现降压过程,因此具有更高的效率但电路复杂度相对增加。例如,PW2558是一个0.8A的DC-DC降压转换器,输入电压范围从4.5V到55V,并支持可调输出电压;工作频率高达1.2MHz并采用SOP8封装,适合需要高效率和小体积的应用场景。而PW2312是1.2A的同步降压转换器,其输入电压范围为4V至30V,同样支持可调输出电压,并且使用SOT23-6封装;频率可达1.4MHz,适用于功率需求稍大的场合。 在实际应用中选择LDO还是DC-DC降压芯片主要取决于以下几个因素: 1. **电流需求**:如果负载电流小于几百毫安,则LDO可能更合适;而当需要超过1A的电流时,DC-DC转换器则更为适合。 2. **效率要求**:由于LDO的效率通常低于DC-DC转换器,在功耗是关键因素的情况下优先考虑后者。 3. **输出电压稳定性和精度需求**:在某些应用中,LDO提供更好的输出电压稳定性及噪声抑制性能优于DC-DC芯片。 4. **封装和空间限制**:对于尺寸受限的设计来说,选择合适的封装形式至关重要。小型化设计时两种方案均需考虑。 5. **成本考量**:尽管PW6206等LDO的成本较低廉,但在大电流或高效率应用中使用高效DC-DC转换器可能更加经济划算。 在进行PCB布局设计时,在选择了适合的电源转换芯片之后还需注意正确的元件放置以减少电磁干扰并确保足够散热措施。例如,在采用PW2312的情况下需要仔细规划电感和电容的位置,同时考虑如何防止过热情况发生,从而保证系统稳定运行不受影响。 总之,无论是从效率、成本还是性能角度出发,设计者在面对不同的电源转换需求时都有多种选择方案可供参考。根据具体的应用场景及技术参数进行综合评估可以有效帮助工程师做出更优决策。
  • 24V转5V及24V转3.3V芯片图、PCB与BOM.pdf
    优质
    本资料详细介绍了将24V电压转换为5V和3.3V的稳压芯片电路设计,包含完整电路图、PCB布局以及物料清单(BOM)。适合电子工程师和技术爱好者参考学习。 24V转5V和24V转3.3V的稳压芯片LDO耐压可达40V。
  • 5V
    优质
    5V稳压电源电路图提供了一个详细的电子元件布局和连接指南,用于创建一个稳定的5伏特直流电源。此设计适用于多种电子设备及项目的供电需求。 这是一张5V稳压电源电路图,设计较为简单,无需详细说明即可直接使用。
  • 48V转5V及48V转3.3V源芯片,IC.pdf
    优质
    本PDF文档深入探讨了48V至5V和48V至3.3V的高效转换技术,提供多种稳压IC解决方案,适用于工业、通信与消费电子设备。 在选择48V转5V以及48V转3.3V的电源芯片时,无锡平芯微系列IC是一个不错的选择。该系列产品包括降压IC、升压IC及升降压IC等多种类型,能够满足不同应用场景的需求。
  • 7805图(5V
    优质
    本资源提供7805三端稳压器构成的5V稳压电源电路图,适用于电子设备中对稳定电压的需求,方便设计和学习。 本段落主要介绍5V7805稳压电源电路图,希望对你的学习有所帮助。