Advertisement

【Keras】利用SegNet和U-Net进行遥感图像语义分割-附件资源

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源深入讲解了如何使用深度学习框架Keras实现基于SegNet和U-Net模型的遥感图像语义分割,提供详细的代码示例与数据集说明。 【Keras】基于SegNet和U-Net的遥感图像语义分割 该文章主要介绍了如何使用深度学习框架Keras实现基于SegNet和U-Net的遥感图像语义分割任务,详细探讨了模型的设计、训练以及应用等方面的内容。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • KerasSegNetU-Net-
    优质
    本资源深入讲解了如何使用深度学习框架Keras实现基于SegNet和U-Net模型的遥感图像语义分割,提供详细的代码示例与数据集说明。 【Keras】基于SegNet和U-Net的遥感图像语义分割 该文章主要介绍了如何使用深度学习框架Keras实现基于SegNet和U-Net的遥感图像语义分割任务,详细探讨了模型的设计、训练以及应用等方面的内容。
  • Keras-DeepLab-V3-Plus-Master____
    优质
    本项目基于Keras实现DeepLabv3+模型,专为遥感图像语义分割设计。通过深度学习技术对遥感图像进行精确的像素级分类与分割,提升图像理解能力。 DeepLab-v3-plus网络结构可以用于实现语义分割任务,适用于普通影像或遥感影像的处理。
  • keras-deeplab-v3-plus-master__深度学习___.zi
    优质
    本项目基于Keras实现DeepLabv3+模型,专注于遥感影像的语义分割任务。通过改进和优化,提高了在复杂场景下的分割精度与效率。 《Keras Deeplab-v3+在遥感图像语义分割中的应用》 Deeplab-v3+是一种基于深度学习的语义分割模型,由谷歌的研究人员开发,在计算机视觉领域特别是遥感图像处理中表现出色。项目“keras-deeplab-v3-plus-master”是该模型的Keras实现版本,专为遥感图像中的语义分割任务设计。 Deeplab-v3+的核心在于改进后的空洞卷积(Atrous Convolution)和多尺度信息融合策略。这种技术使模型能够在不增加计算量的情况下扩大感受野,并能捕捉到更广泛的上下文信息,在处理复杂场景时显得尤为重要。此外,该模型采用了Encoder-Decoder结构,通过上采样和跳跃连接恢复细节信息,解决了语义分割中精细化边界的问题。 遥感图像的语义分割任务是指将每个像素分类为特定类别(如建筑物、道路、水体等),这是遥感数据分析的关键步骤之一。Keras作为Python库提供了一种高效且灵活的方式来构建深度学习模型,使Deeplab-v3+能够轻松应用于遥感图像处理。 项目“keras-deeplab-v3-plus-master”可能包括以下组件: 1. **模型代码**:实现Deeplab-v3+的网络结构和训练过程。 2. **数据预处理脚本**:用于对遥感图像进行裁剪、归一化等操作,以确保其符合Deeplab-v3+的要求。 3. **训练脚本**:包含模型参数设置、优化器选择、损失函数定义等内容的Python代码文件。 4. **评估与可视化工具**:用以分析和展示模型性能的数据处理及结果呈现程序。 5. **预训练模型**:可能提供经过预先训练的Deeplab-v3+版本,可以直接用于预测或微调。 使用此项目时,用户需要准备遥感图像数据集,并根据Deeplab-v3+的要求进行标注。接下来调整训练脚本中的参数(如学习率、批次大小等),然后开始模型训练过程。完成训练后,可以利用该模型对新的遥感图像执行预测任务并生成像素级别的分类结果。 在城市规划、环境监测和灾害评估等领域中,遥感语义分割技术具有广泛的应用前景。例如通过Deeplab-v3+处理卫星影像可迅速准确地获取地面覆盖信息,并为决策者提供科学依据以制定相关政策。 总的来说,“keras-deeplab-v3-plus-master”项目提供了完整的解决方案来执行基于深度学习的遥感图像语义分割任务,结合Keras的强大功能与Deeplab-v3+先进模型设计的优势,在推动相关研究和应用方面具有显著价值。通过深入理解并利用这个平台,开发者能够进一步探索更高级别的遥感数据分析技术,并为该领域的进步做出贡献。
  • 基于U-Net网络的毕业设计.rar
    优质
    本毕业设计采用U-Net网络模型对遥感图像进行语义分割研究,旨在提高分割精度和效率。包含算法实现、实验分析及结果讨论等内容。 基于 U-Net 网络的遥感图像语义分割 一、研究目的: U-Net 是一种由全卷积神经网络启发而来的对称结构,在医疗影像分割领域表现出色。本研究旨在探索将 U-Net 应用于多光谱遥感数据集,以实现自动建筑识别,并寻找简化遥感图像处理的方法。 二、研究方法: 提出了一种新的损失函数——类别平衡交叉熵(Category Balanced Cross Entropy),专门针对遥感影像中的类别不平衡问题。此新损失函数与 U-Net 结合使用,在 Inria Aerial Image Labeling 数据集上进行训练,分别采用传统交叉熵和类别平衡交叉熵两种方法得到两个模型。之后在测试数据集中评估这两种模型的性能。 三、研究结论: 无论是通过正确率还是交叉熵度量,上述两者的差异不大;但当使用 F1 Score 作为评价标准时,两者表现出显著区别:基于普通交叉熵的方法获得的F1分数为0.47,而类别平衡交叉熵方法则有更高的F1得分。
  • 基于U-Net网络的研究_郭子睿1
    优质
    本文由作者郭子睿撰写,主要探讨了在遥感图像处理领域中应用U-Net网络进行语义分割的研究进展和创新方法。通过优化神经网络架构,提高对复杂场景的理解能力,为自然资源监测、城市规划等领域提供技术支撑。 第二章 背景知识 全卷积网络 使用全连接网络进行精准分割 线性结构网络 对称结构网络 第三章 实验设计 数据集选择及处理 图像处理流程设计 网络结构
  • 关于U-Net在高辨率中的应研究.pdf
    优质
    本文探讨了U-Net模型在处理高分辨率遥感图像时进行语义分割的应用效果,并分析其优势与挑战。 图像分割是遥感解译的关键环节之一。高分辨率的遥感图像包含复杂的地物目标信息,传统的分割方法在处理这些复杂的信息上面临诸多挑战,而基于深度卷积神经网络的方法则取得了显著进展。 为此,我们提出了一种改进版U-Net架构的深度卷积神经网络模型来解决高分辨遥感图像中的像素级语义分割问题。通过对原始数据集进行扩充,并针对每类地物目标训练二分类器,最终将各子图预测结果整合为完整的语义分割图像。 此外,我们采用集成学习策略进一步提升了模型的精度,在某个特定的数据集中获得了94%的训练准确率和90%的测试准确率。实验表明该方法不仅能够提供高精确度的结果,并且具备良好的泛化能力,适用于实际工程应用中。
  • 代码
    优质
    本项目提供一套用于处理遥感图像的语义分割代码,旨在精准识别与分类图像中的各类地物要素。通过深度学习技术优化,实现高精度的地表覆盖信息提取。 本段落讨论了基于深度学习的影像语义分割算法的具体实现方法,并涵盖了常用的Unet、SEGNET等模型。这些模型在Keras框架下进行开发和应用。
  • 网络:SegNet
    优质
    SegNet是一种用于图像语义分割的深度学习模型,通过编码器-解码器架构实现像素级分类,无需全连接层和上采样技巧,有效保留空间细节信息。 SegNet网络的论文由Badrinarayanan V, Kendall A 和 Cipolla R撰写,并发表在《IEEE Transactions on Pattern Analysis & Machine Intelligence》期刊上。这项工作基于美国加州大学伯克利分校的研究,提出了一个端到端的全卷积网络用于语义分割任务。该研究中构建了一个深度编码-解码架构,在这个结构里重新利用了ImageNet预训练模型,并通过反卷积层进行上采样操作。此外,还引入了跳跃连接以改善像素定位精度较低的问题。
  • U-Net实践:自有的数据集训练
    优质
    本文章介绍如何使用U-Net模型进行图像语义分割,并详细讲解了利用自有数据集对模型进行训练的方法和流程。 U-Net是一种基于深度学习的图像语义分割方法,在医学图像处理领域表现出色。本课程将指导学员使用labelme工具创建自己的数据集,并生成Mask图像;同时通过U-Net对这些数据进行训练,以支持个人化的图像分割应用开发。 在本课程中,我们将完成三个项目实践: 1. Kaggle盐体识别比赛:利用U-Net技术参与Kaggle的盐体识别挑战。 2. 路坑语义分割:标注汽车行驶场景中的路坑,并对其进行语义分割处理。 3. Kaggle细胞核分割比赛:运用U-Net进行Kaggle细胞核分割任务。 课程采用keras版本的U-Net,在Ubuntu系统环境下,使用Jupyter Notebook展示项目操作流程。包括数据集标记、格式转换及Mask图像生成、编写和训练模型代码文件以及评估网络性能等环节。此外,还会提供项目的相关数据集和Python程序文件以供参考学习。
  • Keras-UNet演示:Unet
    优质
    本项目展示如何使用Keras实现经典的U-Net架构,用于医学影像中的图像分割任务。通过案例学习高效处理和分析医疗图像的技术方法。 U-Net是一个强大的卷积神经网络,专为生物医学图像分割而开发。尽管我在测试图像蒙版上犯了一些错误,但预测对于分割非常有用。Keras的U-Net演示实现用于处理图像分割任务。 特征: - 在Keras中实现的U-Net模型 - 蒙版和覆盖图绘制的图像 - 训练损失时期记录 - 用于绘制蒙版的json文件 - 数据扩充以减少训练过程中的过拟合 获取帮助的方法包括使用labelme工具来获取蒙版点。此外,还有一个实用程序可以帮助查看模型的功能。 按数字顺序接收文件: ```python def last_4chars(x): return x[-7:] file_list = os.listdir(testjsons) # 示例代码 for j, filename in enumerate(sorted(file_list, key=last_4chars)): ``` 这段代码用于从指定目录中读取所有JSON文件,并根据特定规则进行排序。