Advertisement

基于超级电容与蓄电池的DAB变换器模型:电压闭环控制下的恒流恒压充放电仿真研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究构建了结合超级电容和蓄电池的DAB(双主动全桥)变换器模型,重点探讨在电压闭环控制系统下实现恒流恒压充电与放电过程,并进行详细的仿真分析。 本段落研究了基于超级电容与蓄电池的DAB(Dual Active Bridge)变换器模型,在电压闭环控制下进行恒流恒压充电及放电仿真。该系统中输入侧为超级电容,输出侧连接至蓄电池,采用电压闭环控制系统以确保稳定运行。 在反向操作模式下,超级电容对电池执行恒流恒压充电;而在正向操作模式下,则是从电池到超级电容的放电过程,并保证超级电容端口的电压稳定性。整个仿真模型是在MATLAB R2021b Simulink平台上构建和测试完成的。 关键词:超级电容; DAB变换器; 蓄电池; 电压闭环控制; 反向运行恒流恒压充电; 正向操作放电; MATLAB R2021b Simulink仿真模型。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DAB仿
    优质
    本研究构建了结合超级电容和蓄电池的DAB(双主动全桥)变换器模型,重点探讨在电压闭环控制系统下实现恒流恒压充电与放电过程,并进行详细的仿真分析。 本段落研究了基于超级电容与蓄电池的DAB(Dual Active Bridge)变换器模型,在电压闭环控制下进行恒流恒压充电及放电仿真。该系统中输入侧为超级电容,输出侧连接至蓄电池,采用电压闭环控制系统以确保稳定运行。 在反向操作模式下,超级电容对电池执行恒流恒压充电;而在正向操作模式下,则是从电池到超级电容的放电过程,并保证超级电容端口的电压稳定性。整个仿真模型是在MATLAB R2021b Simulink平台上构建和测试完成的。 关键词:超级电容; DAB变换器; 蓄电池; 电压闭环控制; 反向运行恒流恒压充电; 正向操作放电; MATLAB R2021b Simulink仿真模型。
  • MATLAB/Simulink仿
    优质
    本研究开发了一种基于MATLAB/Simulink平台的多级恒流控制电池充放电仿真模型,有效模拟了不同阶段电流对电池性能的影响。 基于MATLAB/Simulink的具有多级恒流控制的电池充放电仿真模型,在性能上优于传统的恒压恒流控制方法。该模型通过两个PI控制环路分别实现电池的充电和放电过程,并采用状态机(Statflow)来实施多级恒流控制。此外,还提供了一份详细的说明文档以帮助用户更好地理解和学习该仿真模型。
  • Buck-BoostMATLAB仿
    优质
    本研究利用MATLAB进行Buck-Boost变换器的恒流充电及恒压放电特性仿真分析,探讨其在电池管理系统中的应用效果。 使用buck boost耦合电路对电池进行恒流充电,并利用反向电路实现恒压放电的MATLAB仿真。
  • buck-supercapacitor.zip_Buck路PI参数_Buck_仿_路_
    优质
    本资源包包含Buck电路PI参数设计、Buck超级电容充电电路及恒流控制方法,附带闭环仿真实验数据和模型。适合电源管理研究与应用。 基于Buck变换电路的双闭环超级电容器充电电源MATLAB仿真模型采用PI调节器进行恒流控制充电,效果良好。
  • LLC,开关
    优质
    本文探讨了在开关电源中实现恒流和恒压充电控制的LLC谐振变换器技术,分析其双环控制系统的设计与优化。 本段落介绍了电动汽车上使用的两种电池及其充电方式:动力电池主要通过直流充电桩或交流充电桩加上车载充电器(OBC)进行充电;而蓄电池则由车载DC/DC变换器供电。常见的充电方法包括恒流充电与恒压充电,这两种模式可能会相互转换。为了规范整个行业标准提出了限压和限流的特性要求,例如《电动汽车非车载传导式充电机技术条件》(NB/T 33001-2018)及《LLC 恒流充电—恒压充电开关电源双环控制》(QC/T 895-2011)。对于不熟悉开关电源控制系统的人来说,理解这些概念可能会有些困难。
  • LCC-LCC无线系统移相仿及优化
    优质
    本研究探讨了LCC-LCC无线充电系统中恒流恒压闭环移相控制策略,并通过仿真分析对其性能进行了深入优化,以提升无线充电效率和稳定性。 本段落研究了LCC-LCC无线充电系统的恒流恒压闭环移相控制仿真与优化方法,并使用Simulink建立了相应的仿真模型。该系统采用LCC-LCC谐振补偿拓扑,通过PI控制器实现对逆变电路的移相占空比进行精确调节。 具体参数如下: - 输入直流电压为350V; - 负载分别设置为50Ω、60Ω和70Ω的可调电阻; - 最大传输功率可达3.4kW,最大效率达到93.6%。 闭环控制策略中设定恒压值为350V,恒流值为7A。这些参数确保了系统在不同负载条件下能够实现稳定高效的无线能量传输。 关键词包括:LCC-LCC无线充电、恒流恒压闭环移相控制、Simulink仿真模型、LCC-LCC谐振补偿拓扑结构、PI控制器应用、最大功率3.4kW输出以及93.6%的最高效率水平。
  • 双向Buck-Boost仿——储能双向DCDC,具备PI式切功能
    优质
    本作品提出了一种双向Buck-Boost电路仿真模型,适用于储能系统的双向直流变换器。该模型采用电压和电流的双重闭环PI控制策略,并且能够根据需求灵活切换蓄电池的充电与放电模式。 双向Buck-Boost电路仿真模型用于储能双向DC/DC变换器,并采用电压电流双闭环PI控制策略。该系统支持蓄电池的充放电模式切换,包括恒流充电和恒压输出功能。在Matlab Simulink环境中建立了相应的模型。
  • buck-boost双向DC-DC仿(输入为直源,输出连接至
    优质
    本文探讨了采用电压外环和电流内环双闭环控制策略下的Buck-Boost双向DC-DC变换器,在输入为直流电压源且输出负载为电池的条件下进行仿真分析。 非隔离双向DC-DC变换器(buck-boost变换器)采用电压外环电流内环的双闭环控制方式,在正向运行时实现直流电压源给电池恒流恒压充电,反向运行时则通过电池放电来维持直流侧电压稳定。在MATLAB Simulink中建立仿真模型,输入端为直流电压源,输出端连接蓄电池模型。
  • LTC4054锂线性路方案
    优质
    LTC4054是一款高效的锂电池恒压恒流线性充电器,适用于单节锂离子/聚合物电池。它提供精确的电压和电流控制,确保安全、快速地为便携设备供电或备用电源充电。 LTC4054 是一款专为单节锂离子电池设计的线性充电器,它内部设有温度控制回路,在最坏情况下可以防止过多的PCB加热,并支持高达600毫安的充电速率。用户可以通过一个控制跳线选择OF 450mA或600mA两种不同的充电速率,其中较低的充电率适用于USB应用。 LTC4054 是一款完整的单节锂离子电池恒定电流和恒定电压线性充电器解决方案。由于其SOT-23封装以及较少的外围组件需求,使得 LTC4054 成为便携式设备的理想选择,并且特别设计用于在USB电源规范内工作。 LTC4054的主要特性包括: - 最大可编程充电电流高达800mA - 不需要外部MOSFET、检测电阻器或隔离二极管 - 适用于单节锂离子电池的完整线性充电解决方案,采用ThinSOT封装设计。 - 具备恒定电流和恒定电压操作,并且通过热调节功能可以最大化充电速率而不会产生过高的温度风险。 - 可直接从USB端口给单节锂离子电池进行充电 - 4.2V预设的充电电压精度达到±1% - 提供用于电池电量监测的充电电流监控器输出接口 - 自动再充电功能 - 充电状态指示引脚,以及C10充电终止选项。 - 在停机模式下的供电电流仅为25µA,并具备2.9V涓流充电门限(LTC4054)。 - 可提供无涓流充电版本的器件 (LTC4054X) - 软启动功能有效限制了浪涌电流 - 采用紧凑型五引脚SOT-23封装。
  • 平BuckPWM仿,涵盖开输出
    优质
    本研究构建了三电平Buck变换器的PWM控制仿真模型,详细分析了开环和基于输出电压以及电压电流双闭环的反馈控制系统特性。 三电平Buck变换器仿真模型采用PWM控制方式,包括开环控制和闭环控制两种模式。其中闭环控制又分为输出电压闭环和输出电压电流双闭环两种方式。该模型既包含单向结构也涵盖双向结构,请在联系时注明所需的具体结构类型。此外,相关运行环境文件适用于MATLAB Simulink及PLECS等平台。