Advertisement

神经网络与机器学习模型的可视化工具——适用于深度学习

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本工具专为深度学习设计,提供神经网络及机器学习模型的高效可视化服务,助力用户深入理解复杂算法结构和运行机制。 支持ONNX(.onnx,.pb,.pbtxt),Keras(.h5,.keras),Caffe(.caffemodel,.prototxt),Caffe2(predict_net.pb,predict_net.pbtxt),MXNet(.model,-symbol.json)和ncnn(.param)以及TensorFlow模型的可视化。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ——
    优质
    本工具专为深度学习设计,提供神经网络及机器学习模型的高效可视化服务,助力用户深入理解复杂算法结构和运行机制。 支持ONNX(.onnx,.pb,.pbtxt),Keras(.h5,.keras),Caffe(.caffemodel,.prototxt),Caffe2(predict_net.pb,predict_net.pbtxt),MXNet(.model,-symbol.json)和ncnn(.param)以及TensorFlow模型的可视化。
  • .docx
    优质
    本文档探讨了机器学习的基础概念,并深入解析了深度学习及其核心组件——神经网络和深度神经网络的工作原理和发展现状。 1.1 机器学习算法 随着多年的发展,机器学习领域已经涌现出了多种多样的算法。例如支持向量机(SVM)、K近邻(KNN)、K均值聚类(K-Means)、随机森林、逻辑回归和神经网络等。 从这些例子可以看出,尽管神经网络在当前的机器学习中占据了一席之地,但它仅仅是众多算法之一。除了它之外,还有许多其他重要的技术被广泛使用。 1.2 机器学习分类 根据学习方式的不同,可以将机器学习分为有监督、无监督、半监督和强化学习四大类: - **有监督学习**:这种类型的学习涉及带有标签的数据集,在这些数据集中每个样本都包含特征X以及相应的输出Y。通过这种方式,算法能够从标记好的示例中进行训练,并逐步提高预测准确性。 - **无监督学习**:在这种情况下,提供给模型的是未标注的输入变量集合(即只有X),没有明确的目标或结果标签供参考。目标是让机器找出数据中的内在结构、模式或者群组等信息。 - **半监督学习**:该方法结合了有监督和无监督的特点,在训练过程中既利用带有标签的数据,也使用大量未标记的信息来改进模型性能。 - **强化学习**:这是一种通过试错机制进行的学习方式。在这种框架下,智能体(agent)执行操作并根据环境反馈获得奖励或惩罚作为指导信号,从而学会如何采取行动以最大化长期累积回报。 半监督方法的一个优点是它只需要少量的标注数据就能实现有效的训练,并且避免了完全依赖于无标签信息可能带来的不确定性问题。
  • 期末复指南:绪论、基础、前馈、正则、卷积及循环
    优质
    本复习指南全面覆盖深度学习核心概念与技术,包括机器学习基础、前馈与卷积神经网络等关键领域,助力期末考试高效备考。 绪论部分涵盖了从人工智能到机器学习再到深度学习的发展历程,并介绍了机器学习的三要素、神经网络经历的三次兴起与两次衰落以及大模型的相关内容。在基础理论方面,文章探讨了梯度下降算法的应用、数学及线性代数的基础知识、线性模型和感知机的工作原理。 前馈神经网络部分重点讲解了BP(反向传播)算法,并深入讨论了深度学习中的优化问题,包括非凸优化方法的使用技巧以及数据预处理的重要性。此外还介绍了正则化技术在解决过拟合问题中的作用与应用。 卷积神经网络章节详细解析了CNN的基本概念、卷积运算及其参数的学习过程,同时阐述了感受野的概念和稀疏交互的意义,并且解释了权值共享机制如何帮助实现平移不变性。池化操作的作用也被重点介绍,此外还探讨了转置卷积与空洞卷积的应用场景。 循环神经网络部分则着重于RNN模型的记忆能力、双向循环神经网络的特点以及解决长程依赖问题的方法,并深入分析了LSTM(长短时记忆)网络和门控机制的设计原理。同时文中也介绍了处理序列数据的多种方法,包括深层循环神经网络等高级架构的应用场景。 综上所述,该内容不仅涵盖了如前馈神经网络、卷积神经网络及循环神经网络在内的常见模型与算法介绍,还进一步剖析了这些技术背后的理论基础及其工作机理。
  • MATLAB:包含等...
    优质
    本书深入浅出地介绍了如何使用MATLAB进行深度学习实践,涵盖机器学习和神经网络等多个领域,适合初学者与进阶读者参考。 开始使用MATLAB进行深度学习和人工智能的深入入门指南。本书首先介绍机器学习的基础知识,然后逐步过渡到神经网络、深度学习以及卷积神经网络的学习。《MATLAB 深度学习》一书在理论与应用相结合的基础上,采用 MATLAB 作为编程语言和工具来展示书中案例研究中的示例。 通过这本书,你将能够解决一些当今世界上的大数据问题、智能机器人以及其他复杂的数据难题。你会了解到深度学习是现代数据分析和使用中更为复杂的机器学习方面,并且更加智能化。 本书内容包括: - 使用MATLAB进行深度学习 - 发现神经网络及多层神经网络的工作原理 - 掌握卷积与池化层的运用方法 - 通过一个MNIST示例来实践这些知识 目标读者:希望使用 MATLAB 学习深度学习的人士。有一定 MATLAB 经验会更有帮助,但不是必须的。
  • 箱:分析
    优质
    深度学习工具箱提供强大的功能与模块,助力研究者和工程师构建、训练及评估复杂的深度神经网络模型,是进行机器学习项目开发不可或缺的资源。 深度学习工具箱(开发阶段) 这是一组用于分析和可视化深度神经网络的工具。 该工具箱最初的目的是为了可视化网络以解决图像分类任务。这项工作的动机源于以下论文: Jason Yosinski,Jeff Clune,Anh Nguyen,Thomas Fuchs 和 Hod Lipson 在2015年国际机器学习大会(ICML)的深度学习研讨会上发表的研究成果。 主要设计目标包括但不限于: 模块化:可以在通用核心功能的基础上添加新的工具 框架不可知性:该工具箱应支持不同的神经网络框架,例如TensorFlow、Torch和Caffe等。 清晰的API:定义接口以便在其他程序中使用这些工具 全面的命令行界面(CLI):允许从命令行或脚本运行所有工具 易于使用的图形用户界面(GUI):提供对工具直观的操作方式 这项工作目前仍在进行之中。以下记录了一些已经实现的功能。 功能性: 展示了用于不同形状分类任务的网络可视化示例 主窗口包括选定层的激活情况
  • 语音去混响:
    优质
    本研究探讨了利用神经网络和深度学习技术进行语音去混响的方法,旨在提升音频清晰度及通信质量。 神经语音去混响的机器学习模型使用LibriSpeech数据集进行训练[1]。另外还可以利用Omni和MARDY的数据集来获取房间冲激响应(RIR)信息[2,3]。对于重传数据,则可以参考语音@FIT混响数据库提供的资源[4]。 后期处理中采用了具有“上下文窗口”的MLP和LSTM模型进行去混响操作[LSTM [5]]以及FD-NDLP方法(WPE + 频域)[6]来进一步改善音频质量。此外,还使用了基于图像分割的U-net架构来进行语音去混响[7]。 生成的数据可以通过特定平台下载,并且可以利用用U-net生成器进行GAN训练的方法得到改进效果。相关的神经网络权重也可以通过相应的途径获取到以供研究和开发之用。
  • 论文
    优质
    本文探讨了强化学习、深度学习及神经网络的核心理论与应用实践,分析它们之间的联系与区别,并提出未来研究方向。 本段落研究了多目标分布式优化问题,并提出了一种基于神经网络的协作神经动力学方法来寻找Pareto最优解并实时生成多个解决方案。 多目标优化涉及同时最小化或最大化几个相互冲突的目标函数,这种问题在科学、工程和经济等领域中普遍存在。例如,在机器学习、模型预测控制以及智能建筑设计等场景下都会遇到这类挑战。由于这些问题的复杂性,传统的方法往往难以有效解决。而基于神经网络的协作神经动力学方法提供了一种有效的途径。 该方法的核心在于利用多个相互作用的神经网络来处理每个目标函数,并通过它们生成Pareto最优解。这种方法不仅能够实时地产生多种解决方案以应对环境变化,还适用于分布式优化场景中的多代理合作问题。 论文详细阐述了基于协作神经动力学策略下的多目标分布式优化算法,并证明了其收敛性。实验验证显示该方法能够在动态环境中有效生成多个Pareto最优解并及时调整这些方案以适应新的情况。 综上所述,采用协作神经动力学的方法是一种有效的解决复杂多目标分布式问题的手段,具备实时产生多种解决方案和快速响应环境变化的优点。
  • (DNN)
    优质
    深度学习神经网络(DNN)是一种模仿人脑工作方式的人工智能技术,通过多层结构学习数据特征,广泛应用于图像识别、语音处理和自然语言理解等领域。 个人从网络收集资料,本资料共分为九个部分介绍深度神经网络。
  • ResNet-18 - MATLAB 开发
    优质
    本项目为一个基于ResNet-18架构的深度学习模型开发工具箱,利用MATLAB实现。提供预训练模型及自定义训练功能,适用于图像分类任务,便于研究与应用。 ResNet-18是一个预先训练好的模型,在ImageNet数据库的子集上进行了训练。该模型经过超过一百万张图像的学习后,能够将图片归类为1000个不同的对象类别(例如键盘、鼠标、铅笔以及各种动物)。通过您的操作系统或在MATLAB中打开resnet18.mlpkginstall文件会启动安装过程,并且此mlpkginstall文件适用于R2018a及更高版本。使用示例包括: - 访问训练好的模型:`net = resnet18();` - 查看网络架构细节:`network layers` - 读取图像进行分类:首先,通过 `I = imread(peppers.png);` 来加载图片。 - 接下来调整图片大小以匹配ResNet-18的输入要求: - 获取模型的第一个层尺寸: `sz = net.Layers(1).InputSize;` - 调整图像尺寸:`I = I(1:sz(1), 1:sz(2), 1:sz(3));` - 使用ResNet-18对图片进行分类: - 标签结果为: `标签 = classify(net, I); ` - 最后,显示图像和识别的类别:`imshow(I)`