Advertisement

DC-DC转换器中的电流检测电路设计方案。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
我们成功地构建了一个极具精度的电流检测电路,该电路的底层工艺采用了华润上华CSMC 0.5um BiCMOS 工艺库。为了验证其性能,我们借助 Cadence Spectre 软件对其进行了全面的电路仿真。仿真结果表明,所设计的电流检测电路的电流取样精度可达 1000:1,从而展现出令人瞩目的采样能力和卓越的性能水平。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DC/DC
    优质
    本设计提出了一种创新的DC/DC转换器电流检测电路方案,旨在提高电力电子设备中的能效和性能。通过优化传感器与控制算法,实现了高精度、低功耗及宽范围的电流监测能力,适用于各种电源管理应用。 我们设计了一个高精度的电流检测电路,采用华润上华CSMC0.5um BiCMOS工艺库,并利用Cadence Spectre软件进行仿真。通过仿真结果得知,所设计的电路能够实现1:1000的电流取样精度,具有很高的采样精度和优秀的性能表现。
  • DC-DC采样.pdf
    优质
    本文档探讨了在DC-DC转换器中设计高效的电流采样电路的方法和技巧,旨在提高电源管理系统的精度与稳定性。 DDCDC转换器中电流采样电路的设计.pdf CDC转换器中电流采样电路的设计.pdf DCDC转换器中电流采样电路的设计.pdf
  • DC-DC
    优质
    本文探讨了在设计DC-DC转换器时选择和优化电感的关键考虑因素,包括效率、稳定性及尺寸限制等方面。 在Buck电路的设计过程中,纹波电流及电感的计算是非常重要的步骤。这些计算有助于确保电路稳定运行并达到预期性能指标。纹波电流是指开关周期内通过电容或电感产生的交流分量,而正确选择电感能够有效减少这种波动对输出电压的影响。进行相关计算时需要考虑负载条件、输入电压范围以及所需的稳压精度等参数,以优化电路设计。
  • 池充DC/DC能量收集-
    优质
    本项目探讨了在锂电池充电器中应用DC/DC转换器的能量收集方案,并详细介绍了相关电路的设计与实现。通过优化能源利用效率,提升了设备性能和续航能力。 本项目基于LTC3331设计了一种能量收集电池充电器的毫微功率降压-升压型DC/DC转换器解决方案。该方案中的DC/DC转换器包括一个集成全波桥式整流器和高电压降压电路,用于从电源、太阳能或磁源中采集能量,并将这些能源转化为电能供给单个输出。 在有收集到的能量可用时,系统会启动降压转换器工作模式,从而降低分流充电器所需的静态电流至200nA。这有助于延长电池寿命并提高效率。而在没有收集能量的情况下,则通过启用升压转换器来单独向VOUT供电。 LTC3331无线电池充电解决方案集成了高电压能量采集电源和一个由可再充式电池驱动的降压-升压型DC/DC转换器,形成了一种适用于替代能源应用的单输出电源。该系统中还包括了一个10mA分流电路以简化利用收集到的能量对电池进行充电的过程,并且具备低电量断开功能来防止深度放电现象的发生。 锂电池充电器能量采集用的DC/DC转换器实物图和原理图可以查看附件内容,其中使用orCAD打开原理图文件,PADS软件用于PCB设计。
  • DC-DC图与PCB
    优质
    本项目专注于DC-DC转换器的设计,涵盖详细电路图及PCB布局。旨在提供高效、稳定的电源解决方案,适用于各种电子设备。 基于LM5160的Fly-Buck DC-DC转换器能够提供隔离电压输出,因此也被称为隔离降压转换器。一个简单的降压转换器加上另一个绕组电感形成耦合电感,并且加入肖特基二极管和电容器后就构成了飞降压转换器。该设计中,电感的一侧作为初级部分,另一侧为次级部分。这种转换器适用于需要由单个电源产生多个输出电压的应用场景,例如+-5V、+-9V等可以使用单一的Fly-Buck转换器来创建。此外,它是一种低功耗和低电磁干扰(EMI)的降压解决方案。
  • SEPICPCB:双向DC-DC
    优质
    本文章专注于SEPIC(单端初级电感转换器)电路的PCB设计过程,特别强调其作为双向DC-DC转换器的应用特点和技术细节。 标题中的“双向dcdc——sepic电路的pcb”指的是SEPIC(Single-Ended Primary Inductor Converter)转换器的PCB设计。这是一种特殊的直流到直流(DC-DC)转换器,能够实现升压和降压的功能,在输入电压与输出电压之间提供双向功率流动的能力。这种电路特别适用于需要在不同电压范围间进行转换且需双向能量传输的应用场景,例如电池管理系统、可再生能源系统等。 描述中的“双向dcdc——sepic电路的pcb”意味着将在PCB层面探讨如何布局和设计一个SEPIC转换器。这涉及电子工程中至关重要的信号完整性和电源完整性以及整体系统的热管理问题。在设计时需要考虑元件布局、布线路径、电源平面分割、去耦电容放置,及电磁兼容性(EMC)等方面。 标签中的“sepic”、“dcdc”和“buck boost”,表明SEPIC是一种转换器类型,“dcdc”表示直流到直流的电压变换。“buck boost”的特性意味着无论输入电压高于或低于输出电压,SEPIC都能工作。这与传统的只能单向转换电压的降压(Buck)或升压(Boost)转换器不同。 文件名“基于stm32升降压DC-DC buck设计(0-18v可调)”暗示该设计可能使用STM32微控制器来控制直流到直流变换,实现从0至18V的连续电压调节。STM32是广泛应用的一种高性能且低功耗的微控制器系列,适合需要精确电压调整的应用场景。 实际设计中需选择适当的开关元件(通常为MOSFET)、电感、电容及控制芯片。这些器件的选择依据所需的输出功率、效率和工作范围而定。随后进行PCB布局,确保高电流路径尽可能短以减少电磁干扰,并优化电源完整性和地平面的连续性。 微控制器通过调节开关元件的工作时间(占空比)来调整输出电压并保持稳定值。通常会有一个反馈回路监测输出电压变化,根据需要调整占空比从而维持恒定输出电压。 热设计同样重要,因为转换器工作时会产生热量。需计算和预测器件的散热需求,并可能添加散热装置或优化结构以确保长时间运行中的稳定性。 总之,设计一个双向SEPIC DC-DC转换器PCB涉及对电源变换原理、PCB布局规则、微控制器编程及热管理策略等多个方面的深入理解与实践挑战。
  • 48V到5V(10W) DC-DC降压-
    优质
    本设计提供了一种高效的48V至5V直流降压转换解决方案,适用于需要稳定电力供应的电子设备。此电路可输出高达10瓦功率,确保了各种应用中的可靠性能。 一种用途广泛的DC-DC转换器,在5V 2A的输出下稳定可靠,适用于为Arduino、Raspberry Pi或Jetson Nano供电。 硬件组件: 德州仪器LMR16020 × 1个 软件应用程序及在线服务: Easyeda 手动工具和制造机: 烙铁(通用) 在电动汽车中,电池组两端的电压通常远高于控制逻辑板所需的电压。因此需要使用降压转换器来有效降低输入电源至5V等低压电平。 选择德州仪器LMR16020的原因如下: - 输入电压范围:4.3 V 至 60 V - 输出电流可达连续的2 A,适合为多个低功耗设备或单个大功率设备(如Nvidia Jetson Nano)供电。 - 内置高端MOSFET节省PCB空间并提高电路效率。 - 关断模式下超低静态电流40μA和1μA睡眠状态下的极低电流,延长电池寿命。 - 集成过热、过压及短路保护功能。 设计参数: - 输入电压:V_IN 48 V - 输出电压:V_OUT 5.0 V - 最大输出电流:I_OUT 2 A - 开关频率:f_SW 600 KHz 设定LMR16020的输出电压,通过顶部反馈电阻器(RFBT)和底部反馈电阻器(RFBB)组成的分压电路实现。基于V_OUT等于5 V的设计,选择17.8 kΩ作为RFBB值。 计算开关频率所需的RT阻值为41.2kΩ以确保600kHz的工作频率。 电感的选择根据最大电流纹波决定,选用KIND系数设为20%,获得的最小电感LMIN约为17.7 μH。最终选择22.0μH的电感器来得到理想的电流纹波值。 输出电压稳定时,需要一个足够大的电容器(COUT)以管理输出端的电压波动。通过计算得出所需的最小容值为8.33 uF,并根据公式确定了实际应用中的最大和最小参数值。
  • 基于MP2307负压DC-DC
    优质
    本简介提出了一种基于MP2307芯片设计的高效负压直流转换电路方案,适用于多种电子设备中需要产生负电源的应用场景。 基于MP2307的负压DC-DC转换器,输出经过TPS7A3001稳压。测试电路分享给大家。
  • TPS5430 DC-DC
    优质
    《TPS5430 DC-DC电源设计与电路方案》深入探讨了采用TPS5430芯片进行高效、稳定的直流转换器开发,涵盖原理图绘制、元件选型及调试技巧。 自己设计了一块DC-DC电源板,使用了TI的TPS5430芯片。该电路板输入电压最高可达36V,输出稳定在5V,并且实测最大电流为3A。技术工程师可以参考此设计。
  • DC-DC图解析
    优质
    本资料深入解析了DC-DC转换器的工作原理和设计技巧,并提供了详尽的电路图示例。适合电子工程师和技术爱好者参考学习。 ### DC-DC转换器电路原理图详解 #### 一、DC-DC转换器概述 DC-DC转换器是一种将直流电源电压变换为另一种不同水平的直流电源电压的电子设备,广泛应用在计算机电源、通信设备及汽车电子产品中。其主要功能在于提供稳定的输出电压,以满足各种电路对特定电压的需求。 #### 二、48V至12V DC-DC转换器原理图分析 ##### 1. 工作原理 这种类型的DC-DC转换器基于开关模式电源(SMPS)的工作机制。其核心组件包括脉冲宽度调制控制器IC1,功率晶体管Q1,储能元件如电感L和变压器B3,滤波电容C9以及续流二极管D4等。 ##### 2. 电路结构解析 - **电源输入与启动:** 输入的电力通过二极管D2和电阻R1为IC1提供大约+12V的启动电压。IC1作为整个系统的控制单元,负责生成PWM信号以调节功率晶体管Q1的工作状态。 - **PWM信号产生及放大:** IC1产生的PWM信号经电容C4耦合到变压器B3,并驱动功率开关Q1。此外,变压器B3还起到隔离和提升效率的作用。 - **能量转换与传递:** 当Q1导通时,电流通过电感L并在滤波电容C9中储存能量;当Q1断开时,电感L中的磁场能转化为电压并通过续流二极管D4为负载供电。这一过程实现了连续的能量传输。 - **反馈控制:** 为了保持输出电压的稳定性,由电阻R11、R10和R9组成的分压网络用于检测输出电压,并将其送回IC1的反馈端口(脚12)。通过与内部基准电压进行比较,控制器能够调整PWM信号的比例来维持稳定的输出。 - **保护机制:** 当负载发生短路或过载时,IC1会监测脚13上的电压并控制PWM信号的宽度以使功率开关Q1停止工作,从而防止设备损坏。 ##### 3. 振荡频率计算 振荡电路的时间常数由电容C8和电阻R7决定。在本例中设定为65kHz的振荡频率。通过相关公式可以验证特定组合下的L、C值是否满足预期的频率要求,但具体数值未给出。 #### 五、硬件设计要点 1. **选择合适的PWM控制器:** PWM控制器的选择至关重要,它直接影响转换器的工作效率和稳定性。 2. **功率开关的选择:** 功率晶体管Q1应具有低导通电阻以减少损耗,并且要考虑到最大电流与电压的额定值。 3. **电感设计:** 合适的电感值可以保证能量传输的有效性,需要匹配所需的开关频率并确保足够的电流余量。 4. **滤波电容选择:** 正确选用滤波电容有助于降低输出电压纹波,从而提高电源质量。 5. **散热设计:** 在高功率应用中,良好的冷却方案对于保护电子元件免受过热损坏至关重要。 #### 六、总结 通过对48V至12V DC-DC转换器原理图的深入分析,我们了解了这种类型转换器的基本工作方式及关键组件的功能。这类转换器在工业和现代电子产品中的应用非常广泛,并且正确理解与设计能够帮助工程师构建更高效可靠的电源解决方案。