Advertisement

基于深度学习的轻量级遥感图像目标检测技术.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文探讨了一种基于深度学习的轻量级算法,专门用于提高遥感图像中目标检测的速度和精度,为相关应用提供高效解决方案。 本段落提出了一种基于深度学习的轻量化遥感图像目标检测方法,在保持高精度的同时解决了传统模型参数过多、存储与计算成本过高的问题。实验结果显示,该方法在确保Tiny-YOLOv3相似准确率的情况下,其模型体积仅为其44.7%,从而实现了精确度、大小和计算资源消耗之间的平衡。 深度学习技术已被广泛应用于遥感图像目标检测领域,能够显著提升检测的速度与准确性。本段落通过设计轻量级的深度学习架构来应对传统方法中存在的参数过多及存储成本过高的难题,并将其用于处理遥感影像中的特定对象识别任务。此外,基于深度学习的目标检测算法主要分为两类:一是依赖候选区域的方法;二是直接进行回归预测的方式。 为了进一步优化模型性能和效率,采用Batch Normalization、Dropout等技术对网络结构进行了改进和完善。面对诸如图像质量欠佳、目标尺寸微小及复杂背景等诸多挑战时,该方法表现出了卓越的适应性和鲁棒性。 轻量化深度学习架构在移动终端上的应用前景广阔,能够支持实时遥感影像分析任务,并且也适用于自动驾驶和机器人视觉等其他领域的需求。本段落所提出的创新理念和技术细节有望为遥感图像目标检测领域的未来发展注入新的活力与突破点。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文探讨了一种基于深度学习的轻量级算法,专门用于提高遥感图像中目标检测的速度和精度,为相关应用提供高效解决方案。 本段落提出了一种基于深度学习的轻量化遥感图像目标检测方法,在保持高精度的同时解决了传统模型参数过多、存储与计算成本过高的问题。实验结果显示,该方法在确保Tiny-YOLOv3相似准确率的情况下,其模型体积仅为其44.7%,从而实现了精确度、大小和计算资源消耗之间的平衡。 深度学习技术已被广泛应用于遥感图像目标检测领域,能够显著提升检测的速度与准确性。本段落通过设计轻量级的深度学习架构来应对传统方法中存在的参数过多及存储成本过高的难题,并将其用于处理遥感影像中的特定对象识别任务。此外,基于深度学习的目标检测算法主要分为两类:一是依赖候选区域的方法;二是直接进行回归预测的方式。 为了进一步优化模型性能和效率,采用Batch Normalization、Dropout等技术对网络结构进行了改进和完善。面对诸如图像质量欠佳、目标尺寸微小及复杂背景等诸多挑战时,该方法表现出了卓越的适应性和鲁棒性。 轻量化深度学习架构在移动终端上的应用前景广阔,能够支持实时遥感影像分析任务,并且也适用于自动驾驶和机器人视觉等其他领域的需求。本段落所提出的创新理念和技术细节有望为遥感图像目标检测领域的未来发展注入新的活力与突破点。
  • 声呐.pdf
    优质
    本文探讨了利用深度学习技术提高声呐图像中目标检测精度的方法和模型,旨在提升水下环境中的物体识别能力。 声呐技术是海洋探测的重要工具之一,通过利用声波在水中的传播特性来进行水下信息的探测、定位及通信。自问世以来,它一直是水下探测领域的关键组成部分。然而,由于受到海水介质以及接收设备限制的影响,声呐图像往往存在噪声斑点、边缘模糊、亮度不均和分辨率低等问题,这为声呐图像处理技术提出了挑战。 近年来,深度学习尤其是卷积神经网络(CNNs)在图像识别领域取得了显著进展,并展现出强大的优势。张家铭与丁迎迎来自江苏自动化研究所的研究团队提出了一种基于深度学习的声呐图像目标识别方法。 研究者首先采用中值滤波预处理技术去除噪声,这是一种非线性滤波方式,可以有效消除椒盐噪点同时保留边缘信息。接着使用Canny算法进行边缘检测,以提高后续特征提取和目标识别的效果。此外,霍夫变换被用于检测图像中的直线特征。 为了进一步优化声呐图像的分割效果,研究者采用自适应阈值化方法实现目标分割,并利用卡尔曼滤波器对跟踪到的目标进行动态预测与过滤处理。随后使用卷积神经网络自动提取并分类识别目标对象。 实验结果表明该方法在多种类型的声呐图像上均表现出较高的准确率和鲁棒性,展示了深度学习技术应用于声呐图像领域中的巨大潜力和发展前景。未来随着算法优化及计算能力的提升,这一领域的研究将取得更多突破性的成果,并为海洋探测、水下目标识别等领域提供更加精确高效的解决方案。
  • SAR算法.pdf
    优质
    本文探讨了一种利用深度学习技术对合成孔径雷达(SAR)图像中的目标进行自动检测的新方法。通过优化网络架构和数据处理流程,该算法显著提高了复杂背景下的目标识别精度与效率,在军事侦察、灾害监测等领域展现出广泛应用潜力。 《基于深度学习的SAR图像目标识别算法》一文探讨了如何利用深度学习技术来提高合成孔径雷达(SAR)图像中的目标识别精度。研究中采用了多种神经网络模型,旨在克服传统方法在复杂环境下的局限性,并展示了该技术在军事侦察、灾害监测等领域的潜在应用价值。
  • 地块划分方法.pdf
    优质
    本文探讨了一种利用深度学习技术进行遥感影像中地块自动划分的新方法,旨在提高农业、城市规划等领域中的土地管理效率和精度。通过深度学习模型训练和算法优化,实现对复杂地形及不同作物类型的精准识别与分类。 基于深度学习的遥感影像地块分割方法的研究探讨了如何利用先进的机器学习技术来提高对卫星图像中的特定区域进行精确划分的能力。这种方法能够帮助研究人员更有效地分析土地使用情况、监测环境变化以及支持农业规划等应用领域。通过采用深度神经网络模型,可以自动识别和分类大面积复杂多样的地表特征,从而为决策者提供更为准确的数据支持。
  • 数据集(用),含片及XML
    优质
    本数据集专为深度学习中的图像目标检测设计,包含大量遥感影像及其对应的XML格式标注文件,助力模型训练与性能优化。 一个用于遥感图像目标检测的开放数据集包括:飞机数据集,包含446幅图像中的4993架飞机;游乐场数据集,包含189张图片中的191个游乐场;天桥数据集,包含176幅图片中的180座天桥;油箱数据集,包含165张图片中的1586个油箱。该数据集中每一张图像都与标签一一对应,并且存储在不同的文件夹中。
  • YOLOV5实战——卫星应用案例100讲
    优质
    本课程深入讲解如何运用YOLOv5算法进行目标检测,并通过100个实例详细展示在卫星遥感图像分析中的深度学习应用。 目标检测YOLO实战应用案例100讲:基于YOLOV5的深度学习卫星遥感图像检测与识别。
  • Yolov3在
    优质
    简介:本文探讨了基于深度学习的目标检测算法Yolov3的工作原理和技术细节,分析其在不同场景下的应用效果。 YOLO 的核心思想是将整张图作为网络的输入,并在输出层直接回归边界框的位置及其所属类别。尽管 faster-RCNN 也使用整张图片作为输入,但它整体上仍然采用了 RCNN 中的 proposal+classifier 思路,只是把提取 proposal 的步骤通过 CNN 实现了;而 YOLO 则采取了直接回归的方法。