Advertisement

生成分岔图,该图基于对连续时间动力系统局部极大值和极小值分析的结果,使用MATLAB开发。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
许多连续时间动力系统的分岔图的构建,通常依赖于对局部最大值的详细考察。 此外,在分析中,我们也必须充分考虑到这些系统中的最小值。 为了解决这一问题,我们开发了一个专门用于 Rössler 系统设计的程序,并且该程序能够被灵活地应用于其他类似的动力学模型之中。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 绘制-MATLAB
    优质
    本项目利用MATLAB开发了一种创新算法,专注于通过分析局部极大值和极小值来生成连续时间动力系统的分岔图。该方法提供了一个强大的工具,用于深入理解复杂动力学行为及其稳定性变化。 大多数连续时间动力系统的分岔图是基于对局部最大值的分析构建的。实际上,我们还必须考虑最小值的影响。为此,我们提出了一种应用于Rössler系统的程序方法,并且该方法同样适用于其他类似的模型。
  • 绘制-MATLAB
    优质
    本项目采用MATLAB实现了一种基于局部极值分析的方法来绘制连续时间动力系统的分岔图,为研究非线性动力学提供了有力工具。 大多数连续时间动力系统的分岔图是基于对局部最大值的分析构建的。实际上,我们还必须考虑最小值的影响。为此,我们提出了一种应用于Rössler系统的程序,并且该方法同样适用于其他类似的模型。
  • 与谷:助您在MATLAB上自识别、绘及标注-_MATLAB
    优质
    本工具帮助用户在MATLAB中轻松识别信号中的峰值与谷值,并自动生成图表,同时对关键点进行准确标注。 轻松让您在 MATLAB 上自动查找、绘制和标记局部最大值(峰值)和局部最小值。此代码需要MATLAB信号处理工具箱。 如何使用这些功能:您只需要您的“x”和“y”数组,就像对一个简单的 plot(x,y) 所做的一样,并提供两个参数:“hs”控制峰值/谷值及其标签之间的水平空间(正值表示向右偏移,负值表示向左偏移),“vs”控制垂直间距。如果有疑问,请设置 hs=0 和 vs=0。 [pks,locs] = PeakDipLabels(x,y,hs,vs) - PeakDipLabels:查找、绘制并标记峰值(红色)和谷值(绿色)。- PeakLabels:仅查找、绘制并标记峰(红色)。- DipLabels:仅查找、绘制并标记谷值(绿色)。
  • MATLAB绘制——实验四:
    优质
    本实验利用MATLAB软件进行连续系统的零极点图形化展示,通过具体案例深入解析系统稳定性、因果性等特性,旨在增强学生对信号与系统课程的理解。 使用MATLAB绘制连续系统的零极点图可以通过多项式求根函数`roots()`来实现。该函数的调用格式为:`p=roots(D)`,其中D是由多项式的系数构成的行向量。 例如,要计算方程`s^2 + 4s + 3 = 0`的根: ```matlab d=[1 4 3]; p=roots(d) ``` 输出结果为: ``` p = -3.0000 -1.0000 ```
  • 使 MATLAB 进行波形并标示最、最
    优质
    本教程详细介绍如何利用MATLAB软件进行波形数据的深入分析,并演示了如何精确标识出波形中的最大值、最小值及所有极值点,为工程与科学领域的信号处理提供强大工具。 MATLAB源码用于分析波形数据,并实现最大值、极值的标识与检出。具体的实现方法可以参考相关博文中的详细说明。该代码能够对一组连续正弦波采样数据进行分析,识别并标记其中的最大值和最小值。 文件内容包括: - 波形数据:一系列连续的正弦波采样点数值。 - 分析结果展示:在图上标识出最大值与极小值的位置。
  • MATLAB中寻找:识别、最、鞍点平坦区
    优质
    本教程介绍如何使用MATLAB来检测图像中的关键特征,包括局部最大值、最小值、鞍点及平坦区域,帮助用户深入理解图像处理技术。 特里斯坦·乌塞尔的图像极值查找器(2013年5月)通过[x,y,z,c]=imextrema(im1)或[x,y,z,c]=imextrema(im1,hood)函数以像素分辨率来估计灰度图像中的局部最大值和最小值。输入参数“im1”可以是任意类型的灰度图像,而输出的x、y坐标则指明了极值的位置;z表示在这些位置处的图像强度值;c用于分类极值类型,具体如下:-1代表局部最低点,0为鞍点(即平缓区域),+1标识局部最高点。另外还有+c=2的情况,这表明该位置上的数据未被定义或无法确定。 用户还可以选择通过设置可选参数hood来指定像素的邻域结构以寻找极值,默认情况下这个值设为8,意味着考虑的是八连通领域(即包括对角线在内的所有相邻像素)。然而,在某些情形下,由于图像离散化的原因可能会导致部分极值无法被精确定义。例如,在鞍点下的双峰情况就可能因为这种特性而出现。 此外需要注意的是,边缘区域不会包含任何局部极值信息。如果噪声干扰了数据的准确性,则建议对原始图像进行预处理以减少其影响。
  • MATLAB中寻找二维数组
    优质
    本文章介绍了如何在MATLAB环境中高效地查找二维数组中的最大值与最小值,并提供了相应的代码示例。 本程序使用MATLAB求取二维数组的极大值与极小值。
  • 工具箱:在 MATLAB 中集 AUTO 软件进行 - matlab
    优质
    本MATLAB工具箱集成了AUTO分岔软件,用于复杂系统的动力学行为和分岔分析,提供强大的数值计算与可视化功能。 这是 AUTO 的 MATLAB 版本,我们通过 mex 函数将 AUTO 集成到 MATLAB 中。该工具箱面向熟悉 AUTO 的研究人员以及希望应用这些技术的人士。动力系统理论在工程环境中广泛应用的一个主要障碍是缺乏能够轻松与现有工具集集成的分叉软件。因此,我们试图解决这一问题,通过将 AUTO 合并到 MATLAB 中来构建 Dynamical Systems Toolbox。这不仅是一个教学工具,也有助于推广这些方法在工程社区中的应用。 新进入该领域的研究人员还需要大量示例作为参考,在未来的版本中会添加更多航空航天相关的例子。目前阶段,我们仍在为工具箱增加一些工程方面的示例案例。欢迎您开发和提交自己的示例以供包含在此工具包内,并可以使用模板文件来实现这一目的。
  • 法及MATLAB源码.zip
    优质
    本资源提供小波分析中模极大值方法的相关理论介绍及其MATLAB实现代码,适用于信号处理和图像分析的研究与学习。 小波分析模极大值法是一种利用小波变换进行信号处理的方法,在MATLAB中可以通过编写源码来实现相关算法。
  • 非平稳(NEVA)工具箱 - MATLAB
    优质
    非平稳极值分析(NEVA)工具箱是一款用于MATLAB环境下的软件包,专为研究和处理时间序列中的极端事件而设计。它提供了一系列先进的统计方法来评估、建模及预测非平稳条件下的极端值情况,适用于气候变化、金融风险等多个领域的需求。 非平稳极值分析(NEVA)软件包的2.0版本由加州大学欧文分校的Linyin Cheng博士开发,并于2014年9月14日发布,使用Matlab编写源代码。 该软件包旨在支持在假设平稳和非平稳条件下的极端值分析。采用贝叶斯方法时,NEVA利用差分进化马尔可夫链(DE-MC)技术来估计极值参数,并实现全局优化以覆盖整个参数空间。通过贝叶斯推理计算收益水平的后验概率区间,该软件包在不确定性量化方面具有独特的优势。 非平稳极值分析的结果使用各种超标概率方法进行展示。我们针对一个案例研究评估了NEVA中平稳和非平稳组件的表现,该案例涉及年度温度最大值的数据集。结果显示,NEVA能够准确描述极端事件及其回报水平。 NEVA软件包包含两个主要部分:第一部分是用于处理年最大值(块极值)的广义极值分布;第二部分则采用广义帕累托分布来分析数据。