Advertisement

基于STM32的Proteus仿真相关扫地机器人避障系统的开发及UCOS版首次发布

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目基于STM32微控制器和Proteus软件,实现了扫地机器人的避障系统仿真,并成功发布了集成UCOS操作系统的版本。 本项目基于STM32的Proteus仿真(UCOSII版本),包含源代码、仿真原理图,并能完美运行。通过Sharp红外距离传感器GP2D12获取传感器与障碍物之间的距离,将采集到的距离值在ILI9341显示屏上显示,并且每秒更新一次并通过串口传输至上位机。当检测到的数值正常时,黄色LED灯常亮而红色LED熄灭;若距离小于设定的安全范围,则黄色LED灯关闭并使红色LED闪烁以示警告。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32Proteus仿UCOS
    优质
    本项目基于STM32微控制器和Proteus软件,实现了扫地机器人的避障系统仿真,并成功发布了集成UCOS操作系统的版本。 本项目基于STM32的Proteus仿真(UCOSII版本),包含源代码、仿真原理图,并能完美运行。通过Sharp红外距离传感器GP2D12获取传感器与障碍物之间的距离,将采集到的距离值在ILI9341显示屏上显示,并且每秒更新一次并通过串口传输至上位机。当检测到的数值正常时,黄色LED灯常亮而红色LED熄灭;若距离小于设定的安全范围,则黄色LED灯关闭并使红色LED闪烁以示警告。
  • STM32Proteus仿设计与实现
    优质
    本项目设计并实现了基于STM32微控制器和Proteus仿真软件的扫地机器人避障系统。通过集成红外传感器,该系统能够准确检测障碍物,并作出相应的路径调整以避开障碍,确保清扫工作的高效进行。 本项目是基于STM32的Proteus仿真(UCOSII版本),文件包含源代码、仿真原理图,并且可以完美运行。
  • STM32智能探讨_万军
    优质
    本文由作者万军撰写,主要讨论了以STM32微控制器为核心设计的一款智能扫地机器人的避障系统。文章深入分析了该系统的硬件和软件实现方式,并对其性能进行了实验验证。通过研究旨在提高扫地机器人在复杂环境中的自主导航与障碍物规避能力。 基于STM32的智能扫地机器人避障系统设计的研究 万军 本段落研究了基于STM32单片机控制系统的智能扫地机器人的避障系统设计。通过优化传感器布局与算法,实现了高效且精准的障碍物检测及规避功能,提升了清扫效率和用户体验。
  • MATLAB仿
    优质
    本项目采用MATLAB平台进行机器人路径规划与避障仿真实验,通过编程实现动态环境下的自主导航功能,探讨算法优化对避障性能的影响。 机器人避障的MATLAB仿真实现包括源代码以及动画效果展示。
  • 模糊逻辑-MATLAB
    优质
    本项目采用MATLAB平台,运用模糊逻辑算法设计了一款智能避障机器人。通过模拟真实环境中的障碍物检测与路径规划,该系统能够实现高效、灵活地避开行进途中的各种障碍,为自动导航技术提供新的解决方案。 使用模糊逻辑的避障机器人的FIS编辑器文件(.fis文件)。将其粘贴到“工作”文件夹中,然后通过MATLAB中的FIS编辑器访问它。
  • STM32红外循迹小车Proteus仿
    优质
    本项目介绍了一款基于STM32微控制器的红外循迹避障小车,并通过Proteus软件进行电路设计与系统仿真实验,验证其功能性能。 文件内容:程序与proteus仿真电路使用的元器件包括STM32F103C8微控制器、蜂鸣器电路、OLED显示屏、电机驱动模块、四个电机、左右两个红外传感器、超声波模块、按键以及LED灯。 主要功能如下: 1. OLED显示屏用于显示系统当前状态,包括是否开始运行及前方是否有障碍物。 2. 通过两组电机驱动模块分别控制四台电机的运转。 3. 左右两侧的红外循迹传感器对路面进行检测,在遇到边缘时自动调整方向。 4. 超声波模块负责探测前方是否存在障碍。一旦发现有障碍,蜂鸣器会发出警报,并启动避障程序。 5. 按键用于控制小车的工作状态(开启或关闭),同时LED灯作为系统指示灯使用,模拟呼吸效果以展示工作情况。
  • STM32设计.pdf
    优质
    本论文探讨了在基于STM32微控制器的无人机上实现高效避障系统的创新方法和技术,旨在提升无人机的安全性和自主飞行能力。 在当前无人机行业快速发展的背景下,飞行安全问题日益引起重视。然而,目前市面上大部分的无人机并未配备避障系统,而自主避障功能是确保其飞行安全性的重要环节。为此,本研究提出了一种基于STM32开发板和超声波模块设计的简单高效的无人机避障方案,并在搭载Pixhawk开源飞控系统的四旋翼无人机平台上进行了测试验证。 该避障系统的研发主要分为系统总体方案设计与硬件实现两大方面:在整体设计方案中,采用HC-SR04型超声波传感器作为测距装置,用于实时监测飞行器前方障碍物的距离;STM32开发板则负责处理这些数据以及来自遥控设备的信号。经过处理后的多路PWM信号能够有效控制无人机进行避障操作。此外,系统还包括了对遥控信号的数据处理模块、PPM编码器及飞控通信接口等组件,确保整个系统的稳定运行。 在硬件设计环节中,该方案涵盖了包括测距装置和执行机构在内的关键部件。其中作为核心的STM32开发板不仅能够接收并分析由超声波传感器提供的距离信息,同时也能处理来自遥控设备的数据,并输出指令给飞控系统以实现避障动作;HC-SR04型超声波传感器则用于检测障碍物的距离,为无人机提供必要的数据支持。 研究与验证工作是在配备了Pixhawk开源飞行控制器的四旋翼平台上进行的。该平台作为一个标准测试环境,通过集成上述设计中的避障方案,在实际操作中展示了良好的避障性能,并且具备一定的通用性——可以在不改变原有飞控软件的情况下移植到其他无人机平台使用。 在这一研究领域内,可以采用多种技术手段来实现有效的障碍物检测与规避功能,例如超声波测距、激光雷达以及双目视觉图像处理等。本项目中选择了性价比高且适用于近距离避障的HC-SR04型超声波模块作为解决方案的核心组件。 综上所述,这项关于无人机自主避障系统的探索和实践为未来在科研机构、广播媒体及军事应用中的广泛使用提供了安全保障,并通过优化飞行环境适应能力来延长设备寿命并减少潜在损失。随着技术的进步,未来的相关研究可以进一步向更高精度与智能化的方向发展,比如结合人工智能技术以实现更加复杂的决策过程。
  • MATLAB算法仿代码
    优质
    本项目利用MATLAB开发了一套机器人避障算法的仿真程序,通过编程模拟实现机器人在复杂环境中的自主导航与障碍物规避功能。 这是一段用于学习机器人避障算法的MATLAB仿真代码,可以直接下载并运行使用。备注非常详细,大家可以自定义避障地图,并且可以更改参数以实现不同的避障效果。
  • MATLAB算法仿代码
    优质
    本项目基于MATLAB开发了一套针对机器人的避障算法仿真代码,旨在通过计算机仿真优化移动机器人的路径规划与障碍物规避策略。 这是一段用于学习机器人避障算法的MATLAB仿真代码,可以直接下载并运行使用。代码备注非常详细,便于理解。用户可以根据自己的需求自定义避障地图或更改参数以实现不同的避障效果。
  • 仿(含Simulink)
    优质
    本项目聚焦于开发和测试基于Simulink环境下的机器人避障算法,通过仿真实现智能路径规划与障碍物规避技术研究。 机器人避障(含Simulink仿真),代码齐全。欢迎下载交流。