Advertisement

关于神经网络在列车自动驾驶控制系统中的应用研究.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本论文深入探讨了神经网络技术在现代列车自动驾驶系统中的应用潜力与实现方式,旨在提高系统的安全性和运行效率。通过分析和实验验证,提出了一种基于深度学习算法优化列车控制策略的新方法。 基于神经网络的列车自动驾驶控制算法研究这一论文探讨了如何利用先进的神经网络技术来提升列车自动控制系统的表现与安全性。通过深入分析现有的技术和方法,并结合实际应用案例,该研究提出了一种创新性的解决方案,旨在优化列车运行效率、提高乘客舒适度并确保行车安全。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本论文深入探讨了神经网络技术在现代列车自动驾驶系统中的应用潜力与实现方式,旨在提高系统的安全性和运行效率。通过分析和实验验证,提出了一种基于深度学习算法优化列车控制策略的新方法。 基于神经网络的列车自动驾驶控制算法研究这一论文探讨了如何利用先进的神经网络技术来提升列车自动控制系统的表现与安全性。通过深入分析现有的技术和方法,并结合实际应用案例,该研究提出了一种创新性的解决方案,旨在优化列车运行效率、提高乘客舒适度并确保行车安全。
  • 模糊跟随.pdf
    优质
    本文探讨了模糊控制技术在自动驾驶汽车中前车跟随场景的应用,分析其优势与局限,并提出改进方案以提升系统性能和安全性。 本段落探讨了基于模糊控制的车辆自动驾驶前车跟随技术的研究进展与应用方法,旨在提高智能驾驶系统在复杂交通环境下的适应性和安全性。通过对现有文献和技术方案进行分析总结,提出了一种改进型的模糊控制器设计思路,并通过仿真试验验证其有效性及优越性。该研究为未来进一步开展相关领域工作提供了理论参考和实践依据。
  • MIMO非仿射输出反馈.pdf
    优质
    本文探讨了利用神经网络技术提升多输入多输出(MIMO)非仿射系统的自适应输出反馈控制性能的方法和效果,旨在解决传统控制算法的局限性。 针对一类多输入多输出(MIMO)非仿射非线性系统,设计了一种基于神经网络的自适应输出反馈控制方案,使输出信号能够跟踪给定的目标信号。
  • RBF逆变器
    优质
    本研究探讨了径向基函数(RBF)神经网络在并网逆变器控制系统中实现自适应调节的应用潜力,通过模拟实验验证其性能优势。 并网逆变器控制系统通常是一种非线性离散系统,其核心作用在于将太阳能、风能等新能源发电系统产生的直流电转换为与电网兼容的交流电,并确保电力品质满足并网标准。传统的控制方法主要采用PID(比例-积分-微分)控制器实现。然而,由于并网逆变器系统的非线性、时变性和不确定性,传统PID控制方法往往无法实现自适应调节,在控制精度和响应速度上存在不足。 针对这一问题,本段落提出了一种基于RBF(径向基函数)神经网络的自适应控制算法来改进传统的PID控制器。通过动态调整PID参数以提升系统的性能。自适应控制算法利用反馈信息不断调整控制器参数,从而应对系统动态变化及外部干扰,并达到预期效果。 径向基函数神经网络是一种采用径向基函数作为激活函数的人工神经网络,具有任意精度近似非线性函数的能力,在控制系统中可用于识别系统动态并调节PID控制器参数。然而,RBF神经网络在训练和应用过程中可能会因迭代初值、速度等参数影响而出现收敛慢甚至不收敛的问题。 为解决这些问题,本段落提出的方法通过设定合理的学习过程调整参数,并根据系统的输出误差大小来优化迭代参数设置,从而克服传统RBF神经网络的稳定性问题并进一步提高控制系统的自适应性能。作者何传燕和黄琦来自电子科技大学电力系统广域测量与控制四川省重点实验室,他们采用仿真模型验证了所提出的基于RBF的PID控制策略,并表明该方法在稳态精度及抗扰动性方面优于传统PID控制系统。 新能源发电因其可持续性和环保特性,在能源领域备受关注。尤其在日本大地震导致核电站事故后,这一趋势更加明显。作为核心设备的并网逆变器对电网质量和规模有着直接影响;然而,现有的基于PID的传统控制方法往往性能欠佳且易造成谐波污染。因此,需要一种更优的算法来满足实际应用需求。 研究中提出的数值仿真模型和结果证明了RBF自适应PID算法的有效性。这不仅改进了并网逆变器的控制系统策略,也对其他非线性系统的控制提供了参考价值。 关键词包括电气工程、并网逆变器、神经网络、RBF自适应PID及迭代参数等,表明研究重点在于利用RBF神经网络特性进行精确调节以实现高精度和稳定性。作者所在的实验室是该领域的学术机构之一,为深入研究提供支持平台;同时,黄琦教授的研究方向也显示了他们在电力系统控制方面的专业性和深度。 本段落提出的基于RBF的并网逆变器自适应控制算法不仅在电气工程领域带来新的思路和技术突破,并对实际应用中的控制系统技术具有重要指导意义。
  • RBF与BPPID对比.pdf
    优质
    本文探讨了径向基函数(RBF)神经网络和反向传播(BP)神经网络在PID控制系统优化中的应用效果,并进行了详细的性能比较分析。 张文霞和袁健的研究比较了基于BP神经网络和RBF(径向基函数)神经网络的PID控制整定效果。研究在MATLAB仿真软件中进行,针对相同的被控对象及其近似数学模型进行了测试,以评估这两种神经网络算法各自的优劣。
  • 深度强化学习决策
    优质
    本研究聚焦于深度强化学习技术在自动驾驶车辆控制和决策制定领域的前沿探索与实践应用,致力于提升自动驾驶系统的响应速度、安全性和环境适应能力。 首先针对近端策略优化算法(Proximal Policy Optimization, PPO)在训练过程中存在的稳定性差及难以收敛的问题。 其次,PPO 算法采用随机采样经验回放体中的样本,在实际应用中会导致收敛速度较慢等问题。 最后,改进的深度强化学习算法被应用于自动驾驶控制决策任务中的车道保持任务,并利用TORCS仿真环境进行实验。通过对各项指标分析验证了该改进算法在自动驾驶车辆控制决策中有效性的提升。 ### 基于深度强化学习的自动驾驶控制决策研究 #### 引言 随着现代科技的发展,尤其是工业互联网和5G技术的进步,自动驾驶技术成为近年来备受关注的研究领域之一。实现自动化的关键在于如何根据环境状态快速做出正确的驾驶决策。作为重要的技术支持手段,深度强化学习(Deep Reinforcement Learning, DRL)通过让智能体与虚拟或真实环境进行互动来获取最优策略,并应用于实际场景中以达成目标。 本段落主要探讨了一种改进的深度强化学习算法在自动驾驶控制决策中的应用,并利用TORCS仿真平台进行了验证测试。 #### 深度强化学习及其在自动驾驶中的应用 结合了传统强化学习方法和深度神经网络技术,DRL能够帮助智能体从复杂环境中提取高级特征表示并做出高效决策。在自动驾驶领域中,该技术可用于处理诸如路径规划、障碍物规避以及交通信号识别等多种任务。本段落特别关注于车道保持这一特定控制决策问题。 #### 近端策略优化算法(PPO)的局限性及其改进 近端策略优化算法是一种广泛应用于强化学习领域的梯度方法。但是,在实际应用中,它存在稳定性差及收敛速度慢等问题。 为解决这些问题: 1. 研究人员提出了基于相关嫡诱导度量(Correntropy Induced Metric, CIM)的PPO版本(CIM-PPO),以克服原算法中的KL散度不对称性问题,并提高策略更新的稳定性和效率; 2. 引入优先级轨迹回放机制(Prioritized Trajectory Replay, PTR),针对经验样本随机采样导致收敛速度慢的问题,通过优化历史数据利用方式加快学习过程。此外,采用Leamer-Actor架构并行处理多个环境以进一步提升性能。 #### 实验验证 为了证明上述改进算法的有效性,在TORCS赛车模拟器中进行了实验测试。该平台提供了理想的评估自动驾驶系统功能的条件。通过对车辆行驶稳定性、路径跟踪精度等关键指标进行分析后,确认了改进后的深度强化学习算法在车道保持任务上表现出色。 #### 结论 通过提出CIM-PPO与PTR相结合的新方法,我们成功解决了传统PPO算法中存在的问题,并提升了其性能表现。实验结果表明,在自动驾驶控制决策中的车道保持场景中,该技术具有明显的优势潜力。这为未来推动自动驾驶的实际应用提供了强有力的支持和依据。接下来的研究可以考虑将这些改进策略应用于更多复杂的驾驶情境下进行进一步探索与验证。
  • 辆调头问题.pdf
    优质
    本文针对自动驾驶场景下的车辆调头问题进行了深入研究,探讨了在不同道路条件下优化调头路径及提高安全性的方法和技术。 自动驾驶是近年来人工智能研究的一个热门领域,在这一背景下车辆调头问题成为了一个非常实际且具有挑战性的场景。本段落围绕无人车在自动驾驶中的调头问题进行了深入探讨,并建立了多种数学模型,包括普通调头轨迹、避开人行通道的调头轨迹及避障调头轨迹等。 通过对附件数据进行处理并重新设定直角坐标系后,我们可以将车辆运动分解为x和y方向。基于无人车独特的转向特性,我们构建了一个三阶段的调头路径模型,并通过仿真模拟展示了不同场景下的应用结果(如图3、4所示)。 为了确定控制点的位置,在考虑了各种弧度变化的情况下,计算出了无人车与障碍物之间的最短距离(见图5)。当需要满足所有可能的角度时,我们发现控制点的y坐标需至少为15.8米。这表明在设定调头路径时必须充分考虑到安全因素。 对于问题二,在原有模型的基础上增加了新的边界限制条件,并分析了不同转弯角度对左右边界的距离影响,从而判断是否需要倒车(见图6)以确保行驶的安全性与可行性。 当涉及到障碍物的避让时,我们分别考虑了仅存在F和D、G和D以及所有障碍同时存在的几种情况(如图7至9所示)。通过调整模型参数,使无人车能够有效避开这些静态或动态移动中的潜在危险区域,并保证其路径规划的安全性和有效性。 进一步地,在问题四中探讨了结合人行通道与障碍物的综合影响。当仅有D和人行道时,我们提出了新的修正方案(如图10所示);而面对全部存在的复杂情况,则进行了更深入的模型优化处理,以确保无人车能够顺利避开所有潜在威胁。 针对动态变化中的障碍物问题,在第五个研究阶段中设计了G和F两个障碍物的具体移动路径,并据此更新了原有的避障策略(见图12)。采用遍历算法来寻找最优解,使车辆在复杂环境中仍能实现高效且安全的调头操作。 最后,通过使用七段S型曲线模型分析求解效率与时间之间的关系,确定了解决方案的最佳执行周期长度(如图13所示),这为提高无人车的实际应用性能提供了重要的参考依据。 综上所述,本段落的研究成果不仅为解决自动驾驶中的车辆调头问题提供了一套全面且高效的解决方案,同时也为进一步推动该领域的技术进步奠定了坚实的理论基础。
  • 遗传倒立摆_13603352.pdz
    优质
    本文探讨了遗传算法优化的神经网络在倒立摆控制系统的应用,通过实验验证了其有效性和优越性,为复杂系统动态控制提供了一种新的解决方案。 本段落重点介绍神经网络在倒立摆控制问题中的研究方法。通过利用神经网络的自学习能力和非线性映射特性,研究人员能够有效地解决倒立摆系统的动态平衡与稳定控制难题。针对传统控制策略难以应对的复杂环境变化和不确定性因素,基于神经网络的方法展示了其强大的适应性和鲁棒性,在提高系统性能方面取得了显著成果。
  • 模糊PID串级温度.pdf
    优质
    本文探讨了将模糊神经网络PID控制器应用于串级温度控制系统中,通过仿真实验验证其有效性和优越性,为工业过程控制提供了一种新的解决方案。 基于模糊神经网络PID的串级温度控制系统的研究主要探讨了如何利用模糊逻辑与神经网络技术优化传统的比例-积分-微分(PID)控制器,以提高温度控制系统的性能。该研究通过结合这两种方法的优势,旨在实现更精确、响应更快且鲁棒性更强的温度调节机制。