Advertisement

基于自适应神经网络的AUV轨迹跟踪控制方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究提出了一种基于自适应神经网络的方法,用于自主无人航行器(AUV)的精确轨迹跟踪控制,显著提升了系统的稳定性和响应速度。 基于自适应神经网络控制的AUV轨迹跟踪控制器设计了一种能够根据环境变化自动调整参数的控制系统,提高了自主水下航行器在复杂海洋条件下的导航精度和稳定性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AUV
    优质
    本研究提出了一种基于自适应神经网络的方法,用于自主无人航行器(AUV)的精确轨迹跟踪控制,显著提升了系统的稳定性和响应速度。 基于自适应神经网络控制的AUV轨迹跟踪控制器设计了一种能够根据环境变化自动调整参数的控制系统,提高了自主水下航行器在复杂海洋条件下的导航精度和稳定性。
  • 与动态面欠驱动船舶滑模
    优质
    本研究提出了一种结合神经网络和动态表面技术的自适应滑模控制器,有效解决了欠驱动船舶在复杂海况下的精确轨迹跟踪问题。 本段落研究了在已知船舶模型前提下不同干扰条件下的轨迹跟踪问题。首先,在外界环境干扰界已知的情况下,结合backstepping设计方法与滑模控制算法,提出了船舶轨迹跟踪的滑模控制律。 其次,针对存在不确定性和未知外部扰动的情况,采用动态面技术、自适应神经网络和滑模控制等手段相结合的方法来实现船舶轨迹追踪。为解决由此带来的“维数灾难”问题以及对虚拟控制器微分操作造成的复杂性增加的问题,提出了一种结合最小参数学习法与动态面控制的欠驱动船舶轨迹跟踪自适应滑模控制律。 最后,在实际应用中,由于难以直接测量船速的情况,设计了非线性观测器来估计船速,并在此基础上利用动态面技术避免对虚拟控制器进行微分操作。从而提出了一种基于非线性观测器和动态面的欠驱动船舶轨迹跟踪自适应滑模输出反馈控制律。 文中提供的资源包括相关文献及MATLAB仿真程序,仅供参考使用。
  • Backstepping欠驱动AUV三维
    优质
    本研究提出了一种基于自适应Backstepping方法的欠驱动自主水下车辆(AUV)三维轨迹跟踪控制策略,旨在提升其在复杂海洋环境下的航行性能和稳定性。 为了实现欠驱动自治水下机器人(AUV)的三维航迹跟踪控制,基于非完整系统理论分析了在缺少横向推进器的情况下AUV欠驱动控制系统的特点,并验证了该情况下存在加速度约束不可积性问题。利用李亚普诺夫稳定性理论和自适应Backstepping方法设计了一个连续时变的航迹点跟踪控制器,以减少外界海流对控制效果的影响。通过仿真实验表明,所提出的控制器能够使欠驱动AUV实现对于一系列三维航迹点的渐近稳定,并且该系统的精确性和鲁棒性明显优于传统的PID控制系统。
  • RBF滑模在机械臂
    优质
    本研究探讨了将径向基函数(RBF)神经网络与滑模控制策略结合应用于机械臂的轨迹跟踪问题,旨在提高系统的动态响应和鲁棒性。通过仿真实验验证所提方法的有效性和优越性。 本段落记录了机械臂轨迹跟踪学习过程中的笔记,并提出了一种基于RBF神经网络的滑模控制器来控制二自由度机械臂进行轨迹跟踪。利用Lyapunov稳定性定理评估系统的稳定性和收敛性,随后通过MATLAB/Simulink仿真验证所建立模型的有效性。首先对比了加入鲁棒项前后对机械臂角度、速度和关节力矩追踪效果的影响;接着考察不同滑模系数对系统性能的差异。实验结果显示,在引入鲁棒项后,控制器表现出更快的稳定性和更佳的收敛特性;对于不同的滑模系数而言,较小值能够带来更好的收敛结果以及快速稳定的响应时间,但同时也可能导致系统的反应速度减慢,并且存在一个临界点使得进一步降低滑模系数不再有益。
  • AUVPID算
    优质
    本文探讨了在自主水下航行器(AUV)轨迹跟踪中应用PID控制算法的技术细节与优化策略,旨在提高导航精度和稳定性。 AUV 轨迹跟踪 PID 控制 Simulink 实现。
  • 滑模在不确定条件下机器人研究
    优质
    本研究探讨了利用神经网络实现自适应滑模控制技术,以增强机器人在存在不确定性环境中的路径追踪性能和稳定性。 本段落提出了一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该方案结合了神经网络的非线性映射能力、滑模变结构技术和自适应控制技术,旨在解决由于系统建模误差及外部干扰导致的问题。 对于机器人的不确定性部分,采用径向基函数(RBF)网络进行逼近和补偿,并通过设计滑动表面来消除这些不确定性的负面影响。同时,在控制器中引入自适应算法以动态调整参数值,进一步提升系统的性能表现。此外,基于Lyapunov理论证明了该方法可以确保机器人的轨迹跟踪误差逐渐收敛至零。 仿真结果表明所提出的控制策略在处理不确定性方面具有优越性和有效性。相较于传统的神经网络控制方案,这种结合滑模变结构与自适应控制的方法能够更快地实现精确的路径追踪,并且具备更好的动态特性以及更强的抗干扰能力,特别适用于难以准确建模或存在不可预测扰动的情况。 综上所述,该方法通过RBF网络的学习功能、滑模变结构控制器的快速响应能力和自适应算法灵活调节参数的能力,在应对系统非线性和不确定性方面表现优异。这种方法的应用和实施对于提高机器人在复杂环境中的操作性能至关重要。
  • 改进
    优质
    本研究提出了一种改进的自适应轨迹跟踪算法,能够有效提升复杂环境下的机器人或自动驾驶车辆路径追踪精度与稳定性。 针对两轮驱动机器人的自适应轨迹跟踪算法进行了研究。该方法能够根据环境变化动态调整参数,提高机器人在复杂地形中的导航精度和稳定性。通过实验验证了算法的有效性,并为进一步优化提供了参考依据。
  • chap2.rar_滑模_滑模__滑模
    优质
    本资源为chap2.rar,包含有关滑模轨迹及轨迹跟踪控制的研究内容,重点介绍了滑模方法在实现精确轨迹跟踪中的应用。 基于滑模控制的机器人的轨迹跟踪控制仿真实验研究
  • 智能车横向MPC
    优质
    本研究提出了一种基于模型预测控制(MPC)的自适应算法,专门用于改善智能车辆在各种道路条件下的横向轨迹跟踪性能。通过实时调整参数和优化路径规划,该方法能有效应对动态环境变化,确保行车安全与稳定性。 在当今科技迅速发展的时代背景下,自动驾驶技术已经成为研究热点与市场关注的焦点。其中,在车辆自主驾驶系统中的轨迹跟踪控制环节扮演着至关重要的角色。通过智能地操控汽车转向系统,使车辆能够按照预设路径行驶是其主要任务之一。 为了提高这一过程的精确性和适应性,研究人员引入了一种先进的自适应模型预测控制(Adaptive Model Predictive Control, AMPC)策略,并在横向轨迹跟踪方面取得了显著成果。AMPC是对传统模型预测控制(MPC)的一种扩展和改进,它结合了MPC处理复杂约束及多目标优化的强大能力,同时融入了自适应控制系统中参数估计的优势。 具体而言,在自动驾驶汽车的横向路径追踪任务中,传统的MPC通过构建车辆动力学模型来预测未来一段时间内的行驶行为,并基于这些预测结果计算出最优控制策略以确保车辆尽可能准确地沿着预设轨迹行进。然而,由于实际驾驶过程中可能遇到多种不可预见的因素(如道路条件变化、速度差异和负载变动等),这可能导致实际的汽车动态特性与模型预测之间出现偏差,从而影响到路径追踪的效果。 AMPC通过在线实时调整模型参数以适应这些变化,并有效减少因模型误差导致的跟踪错误。因此,在复杂多变的道路环境中,智能车辆依然能够保持较高的轨迹跟随精度和稳定性,这对于提高自动驾驶系统的整体性能至关重要。 在仿真测试中,自适应MPC的应用效果得到了充分验证。通过对不同驾驶场景(如静态与动态环境)进行对比分析,可以看出AMPC相较于传统控制策略明显减少了跟踪误差、提高了路径追踪的精确度和稳定性。例如,在应对急转弯或突发障碍物避让等紧急情况时,AMPC能够迅速调整控制策略以确保车辆沿着最优路径且最小化偏差完成横向轨迹追踪任务。 然而,要将自适应MPC更好地应用到实际自动驾驶系统中仍面临一些技术挑战。首先,由于在线计算量较大,需要算法具备更高的实时性,并对计算资源提出更高要求;其次,在保证控制系统鲁棒性的前提下,必须充分考虑可能存在的模型误差及外部干扰的影响。 综上所述,自适应模型预测控制(AMPC)在自动驾驶汽车横向轨迹追踪中的应用展现出强大的能力和广阔的应用前景。通过动态调整参数以适应变化条件,该技术显著提升了自动驾驶系统的灵活性和精确度,并为实现智能车辆精准可靠的路径跟踪提供了重要的技术支持。随着研究的不断深入和技术的进步,预计自适应MPC将在未来自动驾驶领域发挥更加关键的作用,推动这项技术进一步发展与普及。
  • backstepping
    优质
    本研究提出了一种基于backstepping控制理论的轨迹跟踪方法,旨在提高非线性系统中的路径跟随精度与稳定性。通过逐层设计控制器,确保了系统的全局渐近稳定,并有效应对外部干扰和模型不确定性。该方法在机器人导航、自动驾驶等领域具有广泛的应用前景。 基于两轮驱动的机器人轨迹跟踪算法——backstepping是一种用于控制双轮移动机器人的技术方法,通过逐步设计控制器来确保机器人能够精确地跟随预定路径。该算法利用了反步法(backstepping)的核心思想,这是一种递归的设计策略,在非线性系统中广泛使用以实现稳定性和性能目标的优化。这种方法特别适合于需要高精度轨迹跟踪的应用场景,如自动导航、物流搬运和精密制造等领域中的机器人操作任务。