Advertisement

一个简单的压控电流源电路。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该简易压控电流源电路采用数字-模拟(DA)转换器提供的控制电压,并通过放大器和MOS管来产生输出电流。电路的参数具有可变性,能够输出高达2安培的电流强度。同时,电路的电阻部分需要设计为功率电路,以满足其工作需求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    简介:本设计介绍了一种简易且高效的压控电流源电路。通过简单的元件组合实现电压到电流的线性转换,适用于各类电子设备中的电源管理与控制应用。 一个简单的压控电流源电路使用DA提供控制电压,并通过放大器和MOS管输出电流。该电路的参数可调,能够输出2A的电流。由于需要处理较大功率,电阻部分应采用大功率器件。
  • 设计
    优质
    本项目旨在设计一款操作简便、性能稳定的数控直流稳压电源。通过采用先进的控制技术和高效电路设计,实现电压和电流的精确调节与稳定输出,适用于实验室及工业应用。 简易数控直流稳压电源设计 一、设计任务与要求: 本项目旨在设计并制作一款具备一定输出电压调节范围及功能的数控直流稳压电源。具体基本要求如下: 1. 输出直流电压可调范围:5~15V; 2. 纹波小于10mV; 3. 最大输出电流为500mA; 4. 稳压系数应低于0.2; 5. 直流电源内阻须控制在0.5Ω以内; 6. 输出电压能够以步进方式调节,每一步的增量或减量为1V; 7. 通过“+”、“-”按键来实现输出电压的增减。 二、设计方案: 根据上述设计任务要求,数控直流稳压电源的工作原理框图(如图1所示)包含以下三个主要部分:数字控制单元、D/A转换器以及可调稳压模块。具体而言,通过“+”、“-”按键操作一个双向计数器生成相应的二进制信号;这些信号随后被送入D/A变换器并转化为模拟电压值;该模拟电压再经过放大处理达到适宜的范围后用于调整稳压电源输出端口处的实际直流电位水平。因此,通过这种方式可以实现以1V为单位对输出电压进行增减操作。 三、电路设计: 1. 整流与滤波环节的设计: - 选用桥式整流器作为主要结构; - 滤波单元则采用电容型方案。 根据图2所示的整流和滤波电路,其输出电压UI需满足以下计算公式:U≥ Uomax + (UI-UO)min+ △UI。其中: - Uomax代表稳压电源的最大可能输出值; - (UI-UO)min表示在集成稳压器内部输入与输出之间的最小差额; - △UI是整流后的电压波动范围。 以上方案确保了电路能够高效地实现所需的功能和性能指标。
  • 相交与相式交
    优质
    本文探讨了单相交流调压电路及其相控式交流调压技术,分析其工作原理、性能特点及应用领域,为电力电子领域的研究提供参考。 交流调压是指通过某种装置调整交流电压的有效值。这种调节方式通常有三种:相控式、斩波式和通断式。第一种方法的电路主要由晶闸管构成,通过改变控制角来实现电压调节;第二种也称为交流斩波器,一般需要使用全控型器件来完成调压功能;第三种被称为功率控制器,其主电路与相控电路相似但具有不同的控制规则。本节将重点讨论相控式交流调压的方法。
  • 设计可调
    优质
    本项目旨在设计一款多功能、高精度的多路可调直流稳压电源,适用于实验室及电子产品研发。该电源支持多种输出电压和电流调节,具有稳定可靠、操作简便的特点。 设计一个输入为220V交流电、输出包括+5V1A、+12V1A、-12V1A以及(1.25~18)V1A的多路直流稳压电源,并测量以下参数: 1. 稳压系数K:\( K=\frac{\Delta U_o}{\Delta U_i} \) 2. 相对稳压系数S:\( S=\left(\frac{\Delta U_o}{U_o}\right) / \left(\frac{\Delta U_i}{U_i}\right) \) 3. 电压稳定度(voltage stability): \( Sv=\frac{\Delta U_o}{U_o} \) 4. 输出电阻(也称等效内阻或内阻):\( Ro=\frac{\Delta U_o}{\Delta I_L} \) 此外,要求最大纹波电压小于5mV,并计算纹波系数γ(%): 6. 纹波系数γ(%):\( γ = \frac{U_{rms}}{U_o} * 100\% \)
  • 保护
    优质
    本简介介绍了一种简单实用的交流电源短路保护电路的设计与实现方法。该电路能够有效防止设备因短路而受损,并且易于集成到各种电子装置中。 交流电源短路保护电路在电力系统中的作用非常重要,它可以有效防止因短路造成的设备损坏及电能损失。本段落将探讨一个简易的交流电源短路保护电路设计,并解释其工作原理及其应用。 首先需要了解的是,在正常情况下,电源为负载供电;然而当出现线路或负载故障导致短路时,电流会迅速增大,可能导致元件过热甚至烧毁。因此,短路保护的目标是快速检测到这种异常情况并断开负载以防止进一步损害。 在这个简易交流电源短路保护电路中,主要使用的器件包括继电器(KA)和发光二极管(VL)。在正常工作状态下,当有电流通过时,该电流使继电器线圈通电,并吸合继电器接点来连接负载电阻Rfz。一旦发生短路情况,由于阻抗接近于零,导致流经电路的电流急剧增加。 这种情况下,流向继电器线圈中的电流减少,使得其两端电压迅速下降至低于释放阈值。这会导致继电器断开与负载之间的电气连接,并阻止大电流继续通过。此时保护功能完成:电源和负载免受短路损害被有效保障。 发光二极管VL在此电路中作为状态指示器使用,在检测到异常时会点亮,提醒操作人员有故障存在并需要立即处理问题。 设计该硬件电路时需选择适当的继电器和其他元器件以确保其性能符合要求。例如,所选继电器的电流和电压额定值必须能够满足正常工作条件,并且在短路情况下也能保证断开连接;发光二极管应具备合适的电气特性以便于指示故障。 设计原理图时还需要考虑电磁兼容性(EMC)以及安全性问题,确保所有元器件布局合理、避免干扰。此外该电路的设计还需符合相关电气安全标准如IEC 61010等规定。 综上所述,简易交流电源短路保护电路通过继电器和发光二极管的配合实现了对故障情况下的快速响应及指示功能。这种设计简单且实用,在各种需要提供额外防护措施的应用场景中非常有用。对于硬件工程师来说掌握这一基本原理是确保设备安全运行的重要技能之一。
  • (4~20mA)实现方法
    优质
    本文章介绍了一种简单易行的方法来实现电压到4-20毫安电流信号的转换。此技术在工业自动化与控制系统中广泛应用,具有操作简便、精度高的特点。 通过一个双运放和一个三极管可以实现将0~5V信号转换为4~20mA的电路图。该电路设计简单可靠且成本低廉。需要注意的是,图中的第二个运放(U5B)引脚接反了,在使用时需要将第5、6引脚对调即可。
  • 种精密
    优质
    本发明提供了一种高精度可调电流源,通过优化电路设计实现微小电流稳定输出,适用于电子测量和自动化控制领域。 精密压控电流源是一种高精度的电子仪器,其主要功能是将输入的标准电压转换为标准的电流输出,因此也常被称为电流校准仪。这种设备在生产万用电表、电流表的工厂、电力部门、计量部门和实验室等进行相关工作时必不可少。 设计精密压控电流源可以采用多种型号的不同运算放大器来完成,这是因为不同型号具有各自的特点和性能优势,能够适应不同的电路需求。为了达到高精度的要求,在选择运算放大器时必须考虑其低噪声和低漂移特性,例如op-07等集成运算放大器就非常适合这类应用。在制造过程中,功率管需要具备良好的对称性和较小的穿透电流,而电阻则需选用误差小于0.1%且温度系数小的精密元件以确保电路稳定。 从工作原理来看,输入电压通过特定电阻(如R1和R2)分压后加到运算放大器的同相端。这样可以将输入电压转换为输出电流。运算放大器被配置成电压跟随模式,以便传递输出电压至差动比例放大器的反向端形成深度负反馈闭环系统。通过这种方式确保了电路精度与稳定性。此外,改变取样电阻值可调整输出电流大小。 精密压控电流源的技术指标包括直流和交流电流精度分别为0.02%和0.07%,以及45Hz至1,000Hz范围内最大输出量程为10A。其稳定度在8小时内分别为直流的0.008%及交流的0.02%。 为了更好地理解该设备的工作原理与性能,文中提供了关键公式和表格描述了输入电压、电阻值以及相应的电流值之间的关系。这有助于设计时准确预期电路的表现并进行调整以满足需求。 综上所述,精密压控电流源在电子工程领域中非常重要,并且需要精确的电路设计及精选元件来确保最终设备能够达到所需的精度与稳定性要求。该类仪器不仅用于校准工作,在各种需精准控制电流的应用场合也发挥着关键作用,为相关实验和设备提供可靠的输出保障。随着技术进步对这类工具的需求日益增加并提出更高标准,对其研究开发也将持续进行以满足未来的应用需求。
  • 基于Howland精密
    优质
    本项目设计并实现了一种基于Howland电路的高精度压控电流源,能够为电子测试和测量设备提供稳定的可调电流输出。 本段落设计了一种基于Howland电流源电路的精密压控电流源,并详细论述了其工作原理。该方案的核心是V/I转换电路,而误差补偿则通过Howland电流源实现,从而显著提升了电流源的精度。仿真结果显示绝对误差值达到了纳安级别(nA),实际测量中也实现了微安级别的精确度(μA)。实验和仿真的结果均证明了此设计的有效性和可行性。
  • 相交PWM
    优质
    简介:本文探讨了单相交流调压电路中脉冲宽度调制(PWM)技术的应用与优化,旨在提升电力电子设备的工作效率和性能稳定性。通过理论分析与实验验证相结合的方法,研究了不同参数设置对输出电压波形及谐波含量的影响,为PWM控制策略在实际工程中的应用提供了参考依据。 使用Matlab对电力电子技术中的AC-AC变换进行Simulink仿真,以理解PWM原理。