Advertisement

轻小型可见及近红外实时成像光谱仪的光学系统设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究针对轻小型可见及近红外实时成像光谱仪进行光学系统创新设计,旨在优化其体积、重量和性能,适用于环境监测、农业等领域。 为解决传统成像光谱仪难以实时获取光谱与图像信息的问题,设计了一款可见近红外宽谱段视频型成像光谱仪系统。该系统采用多狭缝分光技术对目标的光谱图像进行区域划分,替代传统的推帚式成像方式,实现大视场内的高维空间和时间分辨率采集。通过使用低色散光学玻璃及双胶合透镜来矫正宽谱段光学系统的像差。 前置望远物镜系统采用了复杂的双高斯结构设计,以达到小畸变效果,并确保不同视场狭缝处的能量均匀分布。为了同时获取高质量的实时视频监控和光谱信息,该系统利用分光棱镜将前置望远物镜形成的图像分为两路:一路直接由高分辨率全色相机接收;另一路由灰度相机通过进入分光系统来捕捉。 经过精心选择材料组合与光线路径优化设计后,采用三块棱镜作为主要的分光元件,并实现了理想的萤石-熔石英-萤石组合。这种配置不仅保证了良好的同轴性能,还提供了出色的色散线性度。光学系统的最终设计参数为400~1000 nm宽谱段范围、F数3.5以及前置望远物镜奈奎斯特频率处的调制传递函数(MTF)大于0.5,畸变小于0.1%,像面照度均匀性超过98%。整个系统的奈奎斯特频率处设计MTF值高于0.44,并且平均光谱分辨率达到了10 nm。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究针对轻小型可见及近红外实时成像光谱仪进行光学系统创新设计,旨在优化其体积、重量和性能,适用于环境监测、农业等领域。 为解决传统成像光谱仪难以实时获取光谱与图像信息的问题,设计了一款可见近红外宽谱段视频型成像光谱仪系统。该系统采用多狭缝分光技术对目标的光谱图像进行区域划分,替代传统的推帚式成像方式,实现大视场内的高维空间和时间分辨率采集。通过使用低色散光学玻璃及双胶合透镜来矫正宽谱段光学系统的像差。 前置望远物镜系统采用了复杂的双高斯结构设计,以达到小畸变效果,并确保不同视场狭缝处的能量均匀分布。为了同时获取高质量的实时视频监控和光谱信息,该系统利用分光棱镜将前置望远物镜形成的图像分为两路:一路直接由高分辨率全色相机接收;另一路由灰度相机通过进入分光系统来捕捉。 经过精心选择材料组合与光线路径优化设计后,采用三块棱镜作为主要的分光元件,并实现了理想的萤石-熔石英-萤石组合。这种配置不仅保证了良好的同轴性能,还提供了出色的色散线性度。光学系统的最终设计参数为400~1000 nm宽谱段范围、F数3.5以及前置望远物镜奈奎斯特频率处的调制传递函数(MTF)大于0.5,畸变小于0.1%,像面照度均匀性超过98%。整个系统的奈奎斯特频率处设计MTF值高于0.44,并且平均光谱分辨率达到了10 nm。
  • 优质
    简介:近红外光谱仪是一种利用近红外光(约780nm至2500nm)与物质相互作用来获取样品化学成分信息的分析仪器。广泛应用于食品、农业、制药等领域,具有快速无损检测的特点。 已故院士陆婉珍撰写的关于近红外技术的参考书目涵盖了近红外原理、仪器设备、化学计量学以及相关应用。
  • 入射角棱镜
    优质
    本研究针对小入射角棱镜成像光谱仪进行光学系统设计,旨在优化其在特定应用中的性能与效率。通过精心调整光学元件参数,实现高分辨率、宽光谱范围及小型化的设计目标,适用于环境监测和生物医学等领域的需求。 本段落研究了棱镜色散型光谱仪的特点及其分光原理,并提出了一种新型的小入射角棱镜分光光谱仪的设计方法。该设计采用全反射光路,无需加入校正透镜,从而避免因色差引起的像差问题,提高了成像质量并有效校正了光谱弯曲现象。通过光学设计软件Zemax对所设计的成像光谱仪系统进行了分析和验证。结果表明,在各个波段内该系统的光学传递函数均接近衍射极限,并且光谱弯曲较小,完全满足预期的设计指标要求。
  • 杭州聚PPT课件
    优质
    本课件详尽介绍杭州聚光科技研发的近红外光谱仪,涵盖其技术原理、应用领域及优势特点。适用于工业检测与实验室分析等场景。 近红外光谱仪(杭州聚光),包括相关的课件和PPT材料。
  • 分辨率紫Offner
    优质
    本研究设计了一种基于Offner架构的高光谱分辨率紫外成像光谱仪,旨在优化光学系统以实现卓越的图像质量和高精度光谱分析能力。 紫外成像光谱仪是遥感探测仪器的重要组成部分之一,在机载和星载领域,遥感平台正逐步要求光谱仪在实现高分辨率的同时,设备趋于轻量化和小型化。针对紫外成像光谱仪的这些特点,我们研究了基于Offner结构的紫外成像光谱系统,并设计了一种工作波段为250~400 nm、狭缝长40 mm、光谱分辨率为0.3 nm的高分辨率紫外成像光谱仪。分析结果显示,在38.5 lp/mm处调制传递函数达到0.76以上,实现了接近衍射极限的优良成像质量;同时,该设计下的系统在像元尺寸10%以内控制了谱线弯曲和色畸变。 此外,我们在此基础上缩小了原Offner结构系统的体积,从而满足紫外遥感仪器小型化、轻量化的要求,并且易于加工及装调。这一设计方案符合机载和星载遥感应用的需求。
  • 基于全息变间距极紫
    优质
    本文介绍了一种创新性的极紫外成像光谱仪光学系统的开发,采用全息变间距光栅技术,旨在提高光谱分辨率和观测效率。该设计对于空间物理与天文研究具有重要意义。 随着对太阳等离子体活动物理过程研究的深入发展,设计高性能太阳极紫外成像光谱仪变得越来越重要。一种有效的方法是应用变间距光栅技术。本段落提出了一种使用全息变间距光栅来设计太阳极紫外成像光谱仪的新方法:首先制定系统的初始光学结构;接着利用1stopt软件的全局优化算法,根据全息变间距光栅的光程差原理计算出具有较小像差的光栅;最后通过Zemax软件对整个系统进行建模与进一步优化。文中提供了一个具体的设计案例,设计出的工作范围为17至21纳米、视场宽度为2400角秒且空间分辨率为每像素0.6角秒和光谱分辨率为每像素0.00225纳米的太阳极紫外成像光谱仪。该仪器长度约为两米,并在所设定的工作波长范围内,其空间方向与光谱方向上的均方根半径以及截止频率范围内的调制传递函数都达到了要求的标准。
  • 、高SAR图合集数据集.rar
    优质
    该文件包含多种类型的遥感图像数据集,包括红外、可见光、高光谱和SAR图像,适用于多模态图像处理与分析研究。 资源描述:图像合集数据集(包含红外、可见光、高光谱及SAR图像)。 资源内容:该数据集中已包含了多种类型的配对图像,适合用于各类研究与开发工作。 适用对象:此资源适用于计算机科学、电子信息工程以及数学等相关专业的大专院校学生,在课程设计和毕业项目中可以发挥重要作用。 作者介绍:本资料由一位在大型企业担任高级算法工程师的专家提供。该工程师拥有十年的工作经验,专注于Matlab、Python、C/C++及Java等编程语言的应用,并且擅长计算机视觉技术、目标检测模型开发以及智能优化算法等领域;此外还精通神经网络预测方法和信号处理技巧,在元胞自动机研究与图像处理方面也有丰富的实战经历。同时对智能控制理论和技术路径规划有所涉猎,对于无人机相关领域的研发亦有独到见解。欢迎志同道合者共同探讨学习交流机会。
  • 改进Czerny-Turner方法
    优质
    本研究提出了一种优化的Czerny-Turner型成像光谱仪设计方法,旨在提高其成像质量和分辨率。通过创新性地调整关键元件布局与材料选择,实现了更宽的光谱范围和更高的灵敏度。该方法在天文观测、环境监测及生物医学应用中展现出巨大潜力。 像散是目前限制Czerny-Turner结构成像光谱仪空间分辨率的主要因素之一。通过引入柱面反射镜,并利用光焦度来评估像散的大小,推导出了便于计算的校正公式,从而有效解决了像散问题。此外,还提出了一种准直镜到光栅距离的计算方法,以纠正边缘视场中的像差。同时给出了成像光谱仪中像面倾角的计算方式,实现了宽波段范围内的精确校正。 基于上述技术手段设计并实现了一个改进型Czerny-Turner成像光谱仪,该设备覆盖115至200纳米的波长范围。其焦距为48毫米,F数设定为5.0,在整个视场和全波段范围内调制传递函数(MTF)均超过0.7。此外,此设计还确保了在宽频谱上的分辨率达到了每纳米0.22纳米,并且成像面尺寸达到8毫米乘以7毫米。 这种设计方案可以适用于不同结构需求的成像光谱仪中。
  • -特征波长选择方法
    优质
    本研究提出了一种创新的可见至近红外光谱范围内特征波长筛选技术,旨在提高数据处理效率和分析准确性,为相关领域应用提供有力支持。 本段落提出了一种结合模拟退火(SA)算法与最小二乘法支持向量机(LS-SVM)的新方法(SA-LS-SVM),用于选择可见-近红外光谱中的特征波长。该方法利用LS-SVM作为识别器,并以识别率为目标函数,来提取最优的特征波长数量及其对应的特定波段。 我们选取了三种不同品牌的润滑油样本进行实验研究,通过应用SA-LS-SVM、主成分回归分析(PCA)和偏最小二乘法(PLS),对这些样品进行了处理。随后利用反向传播人工神经网络(BP-ANN)来评估各种方法的识别预测效果。 结果显示,在751个数据光谱中,采用SA-LS-SVM仅需提取4个特征波长即可实现三种品牌润滑油的完全准确分类(即识别率达到100%)。相比之下,其他所有方法均未能达到这一精度。这表明了新提出的SA-LS-SVM算法在提高预测准确性的同时有效减少了模型变量的数量。 实验结果证明了该方法不仅能够显著减少建模所需的数据维度,并且还能极大提升对润滑油品牌的分类准确度。