Advertisement

激光SLAM的理论与应用实务

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《激光SLAM的理论与应用实务》一书深入浅出地介绍了激光SLAM技术的核心原理及其在机器人导航定位中的实际应用案例,旨在帮助读者全面掌握该领域的知识体系。 激光SLAM理论与实践课程作业及资料提供了深入学习该领域的宝贵资源。这些材料涵盖了从基础概念到高级应用的全面内容,旨在帮助学生更好地理解和掌握相关技术。通过完成这些作业,学生们能够将理论知识应用于实际问题解决中,并加深对机器人导航和定位的理解。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SLAM
    优质
    《激光SLAM的理论与应用实务》一书深入浅出地介绍了激光SLAM技术的核心原理及其在机器人导航定位中的实际应用案例,旨在帮助读者全面掌握该领域的知识体系。 激光SLAM理论与实践课程作业及资料提供了深入学习该领域的宝贵资源。这些材料涵盖了从基础概念到高级应用的全面内容,旨在帮助学生更好地理解和掌握相关技术。通过完成这些作业,学生们能够将理论知识应用于实际问题解决中,并加深对机器人导航和定位的理解。
  • 优质开源SLAM
    优质
    本论文深入探讨了基于激光的Simultaneous Localization and Mapping (SLAM)技术,并提供了高质量的开源代码和算法,为研究者与开发者提供了一个宝贵的资源平台。 开源激光SLAM优质论文包括carto, lio, loam, lego-loam, lio-sam, gmapping 和 hector-slam。这些研究为机器人导航领域提供了重要的理论和技术支持,是相关研究人员的重要参考资料。
  • 2DSLAM程序仿真_matlab_SLAM雷达_SLAM技术_SLAM
    优质
    本项目基于MATLAB开发,运用2D激光SLAM算法进行机器人定位与地图构建的仿真研究。通过模拟激光雷达数据,实现同步定位与建图(SLAM)功能。 一个激光SLAM的MATLAB仿真程序,代码配有详细解释,非常有助于学习SLAM。
  • A-LOAMSLAM
    优质
    A-LOAM是一种先进的激光SLAM算法,通过利用ICP快速收敛特性与LOAM精确特征提取相结合,实现高精度、实时性的三维环境建图和定位。 A-LOAM是由香港科技大学及华为天才少年秦通博士对张绩的LOAM框架进行优化的一个激光SLAM框架。作为学习激光SLAM的基础工具,A-LOAM具有良好的代码可读性和清晰的设计思路,非常适合初学者研究和理解。该框架使用Eigen以及Ceres-Solver重构原始LOAM,在保持算法原理不变的前提下进行了代码优化,使其更加简洁易懂。 LOAM主要包含两个模块:Lidar Odometry(利用激光雷达计算两次扫描之间的位姿变换)与Lidar Mapping(基于多次扫描结果构建地图并细化位姿轨迹)。由于Mapping部分的计算量较大,其运行频率较低(1Hz),主要用于校准和优化Odometry过程中产生的轨迹。
  • SLAM经典文译文 完整版
    优质
    本资料为经典激光SLAM论文的完整翻译版本,深入浅出地介绍了激光SLAM技术的核心原理与方法,适合机器人技术研究者参考学习。 本段落翻译的是2011年的hectorslam方法的全文。文中提出了一种灵活且可扩展的系统,用于解决无人地面车辆(UGV)、无人水面艇(USV)以及小型室内导航系统的SLAM(同时定位与建图)问题。该方法计算资源消耗较少,能够在低重量、低功耗和低成本处理器上运行,并以开源软件的形式在ROS平台上实现。此外,它还兼容ROS平台上的API及导航堆栈,在ROS生态系统中可以替代其他SLAM方法使用。
  • 基于MATLABGAZEBOSLAM仿真
    优质
    本研究基于MATLAB和Gazebo平台,探讨并实现了一种高效的激光SLAM( simultaneous localization and mapping)算法,在复杂环境中进行机器人定位与地图构建。 【作品名称】:基于MATLAB和GAZEBO的激光SLAM仿真 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】 Usage Matlab: Step1: setenv(ROS_MASTER_URI, http://UBUNTU-IP:11311); setenv(ROS_IP,PC-IP); Step2: rosinit Ubuntu 16.04 (kinetic): Step1: roscore Step2: roslaunch mrobot_laser_nav_gazebo.launch 注意:你需要在MATLAB和UBUNTU中设置 ROS_MASTER_URI 和 ROS_HOSTNAME。
  • SLAM算法探讨
    优质
    本研究聚焦于激光SLAM算法的研究与优化,旨在提升机器人在未知环境中的自主导航能力和地图构建精度。通过分析不同场景下的适用性,探索高效、鲁棒性强的解决方案。 激光 SLAM 算法 源码 开源代码 激光 SLAM 算法 源码 开源代码
  • 基于图优化GNSSSLAM位姿优化算法
    优质
    本研究提出了一种结合GNSS与激光数据的SLAM位姿优化算法,利用图优化理论有效提升定位精度和鲁棒性。 本段落提出了一种基于图优化理论和全球导航卫星系统(GNSS)数据的激光雷达SLAM(同步定位与建图)位姿优化算法。SLAM是机器人定位和环境构建的关键技术,而激光雷达因其高精度和可靠性,在SLAM中扮演着重要角色。然而,传统的激光雷达SLAM算法在无回环或长时性回环情况下可能会出现轨迹误差,影响全局一致性。 该算法的独特之处在于它结合了图优化算法与GNSS定位数据,并将卫星定位节点引入到位姿图中。通过最小化节点间的边权重来优化整个图结构的图优化理论能够提升SLAM系统的定位精度。在位姿图中加入GNSS节点,意味着可以利用卫星定位信息辅助激光雷达的数据处理,在无回环的情况下,能够有效控制轨迹误差至GNSS定位误差范围内。 实际测试表明,该算法无论是在城市环境还是非城市环境中都表现良好。例如,在300米直线建图场景下(无回环),轨迹偏差被控制在1米左右;而在进行一次和二次回环时的长距离情况下(超过360米),轨迹误差分别限制于0.2米以内和0.1米左右,这表明算法能够有效地校正定位错误并提高全局一致性。 实验结果证实了所提激光雷达SLAM位姿优化算法的有效性。在高楼林立的城市环境中,该算法保持稳定且精确的定位能力;而在森林、农田等复杂地形中,其依然能提供可靠的定位服务,这对于无人驾驶、无人机导航和智能物流等领域具有重要意义。 此外,由于充分利用GNSS数据,即使是在无信号覆盖或弱信号环境下也能通过激光雷达数据进行辅助定位。这种融合多种传感器信息的方法是未来SLAM技术发展的重要方向之一,有助于克服单一传感器的局限性,并提高整体定位与建图的准确性。 本段落提出的基于图优化理论和GNSS结合的激光雷达SLAM位姿优化算法不仅提升了系统的全局一致性,还增强了其在不同环境下的适应能力。这为实际应用提供了更为可靠的技术支持,随着自动驾驶、机器人技术的发展,这样的优化算法将进一步推动智能系统在复杂环境下自主导航的能力。
  • 2DSLAM时闭环检测.pdf
    优质
    本文探讨了基于2D激光扫描数据实现即时定位与地图构建(SLAM)中的实时闭环检测技术。通过该方法能够有效提高机器人在长期自主导航过程中的定位精度和地图质量。 绘图员的中文翻译是“catorgrapher”,但这个单词可能存在拼写错误或特定领域的用法,并非通用词汇。便携式激光测距仪(即LIDAR)以及实时定位与建图(SLAM),都是建立平面图的有效方法。这些技术能够实现实时生成和绘制地图,从而很好地评估捕获数据的质量。因此,在有限资源条件下构建一个可接入的平台是非常必要的。本段落提供了一种在mapping平台上使用的方法,以实现5厘米分辨率的实时绘图以及闭环检测功能。为了达到实时闭环检测的目的,我们采用了分支定界法来计算扫描到地图匹配时所需的约束条件。
  • ROS+YOLOV8+SLAM智能小车导航战(四):雷达SLAM建图
    优质
    本教程详细讲解了如何将ROS、YOLOv8及SLAM技术融合应用于智能小车,重点介绍激光雷达在环境感知和地图构建中的作用。 在本实践教程中,我们将深入探讨如何利用ROS(Robot Operating System)、YOLOV8和SLAM技术实现智能小车的导航功能,特别是通过激光雷达进行环境建图。这一部分主要关注激光雷达与SLAM算法的结合应用。 ROS是一个开源操作系统,专为开发机器人应用程序而设计。它提供了硬件抽象、消息传递、包管理等基础设施,使得开发者可以专注于算法和功能实现而非底层系统集成,在智能小车导航中扮演核心协调者的角色,负责处理传感器数据、执行任务调度以及与其他节点通信。 YOLO(You Only Look Once)系列是用于识别图像中的物体的目标检测算法。其中,YOLOV8作为最新版本,可能在速度与精度方面有所提升。在智能小车导航中,它帮助实时识别周围障碍物以确保安全行驶。 SLAM技术涉及机器人同时定位自身位置并构建环境地图的过程,在未知环境中尤为必要。该过程通常包括数据采集(如激光雷达或视觉传感器)、特征提取、状态估计和地图更新等步骤。对于激光雷达+SLAM的场景,点云数据有助于建立高精度三维模型。 激光雷达通过发射激光束测量反射时间来确定距离,为智能小车导航提供连续且密集的数据支持基础。在处理这些数据时通常会选择如Gmapping或Hector SLAM这类专门针对激光雷达的技术框架进行有效操作和地图构建工作。 在“robot_vslam-main”项目中,预期包含以下组件: 1. **ROS节点**:用于接收与处理激光雷达信号的程序模块。 2. **SLAM算法实现**:可能包括自定义代码或封装库,支持数据处理及环境建模功能。 3. **地图发布器**:将生成的地图以可视化形式展示出来供查看使用。 4. **小车定位系统**:结合SLAM结果与车辆运动学模型计算实时位置信息。 5. **路径规划和控制模块**:根据构建好的地图以及目标点制定安全行驶路线并实现对车子的操控。 通过整合这些组件,可以使得智能小车在未知环境中自主导航、避开障碍物,并建立周围环境的地图。实际应用中还需考虑算法优化、传感器噪声处理及适应不同条件等问题以保证系统的稳定性和可靠性。学习ROS、YOLOV8和SLAM技术将有助于提升智能小车的导航能力并推动机器人技术进步。