
无网格伽辽金法中本质边界条件的处理
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本研究探讨了在无网格伽辽金法中的本质边界条件处理方法,提出了一种有效的实施策略,以提高数值模拟精度和效率。
在计算力学领域内,传统的数值分析方法如有限元法(FEM)与边界元法(BEM),对于解决大变形及非连续性问题存在局限性。例如,在处理冲压成型或裂纹扩展这类涉及复杂应力应变状态的问题时,传统网格划分技术可能导致前处理困难,并引发计算中的不连续现象。
无网格伽辽金方法 (Element-Free Galerkin Method, EFGM) 是近二十年来出现的一种创新算法,广泛应用于工程及科学领域的模拟。EFG法采用移动最小二乘法构造形函数,它不再依赖于传统的单元划分方式,而是通过一系列离散点覆盖整个问题域进行数值逼近。
在处理本质边界条件方面,EFG方法面临挑战:由于其形式化函数不是基于Kronecker δ 条件构建的,在应用过程中难以直接施加这些约束。为解决这一难题,研究者开发了多种策略如有限单元耦合法、罚函数法和拉格朗日乘子法来确保边界条件的有效实现。
移动最小二乘(MLS)方法是构造形函数的重要手段之一,它通过局部加权的最小二乘逼近技术生成具有高阶连续性的形式化函数。例如,Nayroles等人将MLS应用于Galerkin框架中提出扩散单元法 (DEM);Belytschko和Atluri分别发展了无单元Galerkin方法(EFG)与局部Petrov-Galerkin方法(MLPG),进一步推动了无网格技术的应用范围。
此外,光滑粒子流体动力学(SPH, Smooth Particle Hydrodynamic Method)是最早的用于处理边界问题的无网格算法之一。Liu等人针对SPH在求解边界面和不规则点时精度不足的问题提出了改进方案——重构核函数法(RKPM),此方法为SPH提供了增强版解决方案;Duarte与Oden开发了单位分解有限元法(PUFEM),指出MLS是PU的一个特例。这些创新技术从不同角度丰富和完善了移动最小二乘法,促进了无网格计算在现代工程力学中的应用。
无网格算法的核心在于使用离散节点而非单元来模拟问题区域。这种方法避免了传统方法中由于拓扑结构限制所导致的问题,并且能够更灵活地处理边界条件和非连续性现象。权函数的紧支集特性确保其仅影响到局部邻域,从而提高了计算效率与精度。
核函数(或称权重函数)技术是定义节点间数值逼近的关键手段,在SPH方法中首次被采用并满足特定要求如非负性、积分值为1等条件以保障连续性和准确度。EFG法及其他无网格算法的发展显著提升了现代工程及科学计算的能力,尤其在处理复杂变形和边界条件下表现出了明显优势。
随着数值技术与计算机硬件的进步,可以预见这些方法会在更多领域得到应用和发展。
全部评论 (0)


