Advertisement

MCP7940模拟IIC的Pic IO口代码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本段代码展示了如何使用PIC微控制器通过模拟I2C协议与MCP7940实时时钟芯片进行通信的方法,包括初始化和数据读写操作。 调试通过的PIC单片机程序,使用的是型号为PIC18F25K80的芯片以及MPLAB 8.91版本的PICC18编译器。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MCP7940IICPic IO
    优质
    本段代码展示了如何使用PIC微控制器通过模拟I2C协议与MCP7940实时时钟芯片进行通信的方法,包括初始化和数据读写操作。 调试通过的PIC单片机程序,使用的是型号为PIC18F25K80的芯片以及MPLAB 8.91版本的PICC18编译器。
  • IOIIC从机程序
    优质
    本程序实现了一个基于输入输出(I/O)操作的模拟IIC从机功能,适用于需要通过软件方式仿真IIC通信的应用场景。 这是一个我用于小项目上的模拟IIC从机的程序,比较小巧简单。
  • QMI8658C IIC驱动
    优质
    本段代码为Qualcomm QMI8658C传感器的模拟IIC接口驱动设计,适用于Linux系统环境,提供设备初始化、数据读取及中断处理功能。 QMI8658C 驱动代码采用模拟IIC接口编写。
  • MSP430软件IIC总线IO
    优质
    本项目旨在通过MSP430微控制器实现软件模拟IIC总线通信功能,利用通用I/O口替代硬件IIC模块,适用于资源受限的应用场景。 IIC总线(MSP430软件模拟IO)可用于任何IIC总线的外设,并且在MSP430F5529上已测试通过。
  • Python IIC
    优质
    本项目提供了一个使用Python编写的IIC(I2C)通信协议的模拟代码,适用于学习和测试硬件设备间的数据传输。 此代码通过模拟IIC接口,可直接使用。
  • STM32 IIC
    优质
    本段代码实现了一个在STM32微控制器上运行的IIC通信协议的软件仿真功能,适用于学习和测试目的。 STM32模拟IIC代码如下: ```c void I2C_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /* 配置I2C1引脚:SCL和SDA */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); } ``` 这段代码用于初始化STM32的IIC引脚,包括设置SCL和SDA为开漏输出模式,并配置它们的工作速度。
  • 28335 IOSPI.rar
    优质
    此资源为一个关于使用IO口模拟SPI通信的代码或程序包,适用于进行硬件控制与数据传输,方便开发者在缺少专用SPI接口时实现SPI通讯功能。 通过配置I/O口,使普通IO口具备SPI通信能力,提高DSP的使用灵活性。
  • STM32 IOPWMDRV_IO_PWN_
    优质
    本模块介绍如何在STM32微控制器上配置IO口以模拟PWM信号输出,适用于需要硬件PWM功能但资源有限的应用场景。 STM32 IO口模拟PWM功能方便移植,并且代码中有详细的注释。
  • DAC7678驱动IO实现IIC通信
    优质
    本项目介绍如何利用DAC7678芯片通过软件编程方式驱动GPIO接口来仿真IIC总线协议,完成与外部设备的数据交换。 DAC7678是一款12位四通道数模转换器(Digital-to-Analog Converter),适用于工业自动化、仪器仪表及嵌入式系统等领域,用于将数字信号转化为模拟电压输出。本段落探讨了如何使用IO模拟IIC协议来驱动DAC7678,并介绍了在msp430微控制器上的实现方法。 IIC是一种多主机双向二线制同步串行接口协议,由Philips(现NXP)公司开发,在嵌入式系统中广泛用于设备间通信。当没有硬件IIC接口时,可以通过软件模拟的方式来实现IO模拟IIC技术,这种技术在资源有限的微控制器如msp430中尤为常见。 在IO模拟IIC协议下,通常需要两个GPIO引脚来分别控制SCL(时钟)和SDA(数据)。通过精确地管理这两个引脚的状态与时间序列,可以实现包括启动、停止、写入及读取在内的所有IIC操作。 驱动DAC7678时,首先要了解其基本工作原理。它利用IIC接口进行通信,并允许每个通道独立设置输出电压范围通常为0到5V。在IIC中,需要发送一个七位的器件地址以选择特定设备并确定写入或读取操作类型。对于DAC7678来说,可能的器件地址是1010000(根据具体配置),其中写操作代码为0而读操作代码为1。 在执行写操作时,需要发送八位寄存器地址如配置寄存器、数据寄存器等,并随后发送八位的数据。每个通道可通过设置相应数据寄存器来调整输出电压;每比特对应模拟输出的12^(-1)范围,因此其有效值为0至4095mV(即从0到2^12-1)。 使用msp430进行IO模拟IIC时,需编写代码控制GPIO以实现IIC协议。这包括设置延时确保足够的上升和下降时间、处理数据的起始与停止条件及ACK/NACK机制等步骤: 1. 初始化GPIO:配置引脚为输出模式,并设定初始状态。 2. 发送启动信号:使SDA低电平,随后释放SCL以保证在SCL上升沿前保持SDA低位。 3. 传输设备地址和操作类型:交替拉低与释放SDA来发送每位数据并检查ACK响应。 4. 发送寄存器地址及数据:同样使用位传输方式,并等待接收最后一位的ACK确认信号后继续执行后续动作。 5. 结束通信:使SDA保持低位,然后将SCL置高确保在随后上升沿时SDA已恢复高位状态以完成停止条件设置。 6. 若需要读取信息,则可在地址发送完毕之后切换至读模式并进行数据接收操作,同时根据需求发出ACK或NACK信号。 实际编程中可以利用中断或者轮询机制来处理GPIO状态的变化,并确保准确的时间控制。此外为了提高代码的可移植性,建议将相关功能封装为函数库以方便在其他项目中的复用。 测试程序如test-dac7678-2和done可能记录了驱动DAC7678的实际实验过程或验证结果,这些文件有助于调试与优化代码确保其正确性和稳定性。通过理解并实现这一流程,不仅能够更深入地掌握嵌入式系统中软硬件交互的应用技术,还能扩展至其他类似外设的驱动开发工作之中。