Advertisement

STM32在ST定时器中通过主从模式实现六组PWM同步互补输出及两路可调频率和占空比的PWM信号

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目基于STM32微控制器,利用其高级定时器模块的主从模式特性,实现了六个通道的PWM信号同步互补输出,并同时生成两个独立可调节频率与占空比的PWM信号。 1. 实现TIM1和TIM8共6对PWM互补输出。 2. 使TIM1和TIM8的PWM输出同步。 3. 对PB4引脚实现复用功能。 在STM32主从模式下,实现两路同步PWM脉冲输出,并可调节频率和占空比。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32STPWMPWM
    优质
    本项目基于STM32微控制器,利用其高级定时器模块的主从模式特性,实现了六个通道的PWM信号同步互补输出,并同时生成两个独立可调节频率与占空比的PWM信号。 1. 实现TIM1和TIM8共6对PWM互补输出。 2. 使TIM1和TIM8的PWM输出同步。 3. 对PB4引脚实现复用功能。 在STM32主从模式下,实现两路同步PWM脉冲输出,并可调节频率和占空比。
  • STM32PWM
    优质
    本文介绍了如何使用STM32微控制器的通用定时器模块来产生具有可调节频率与占空比的互补PWM信号,适用于电机控制等应用。 通过使用STM32的通用定时器,可以采用多种方法生成互补PWM波形,并且能够灵活调整频率和占空比。当高级定时器资源不足而需要输出(互补)PWM信号时,这种方法提供了一个有效的解决方案。
  • 生成PWM
    优质
    本项目设计了一种能够同时生成两个独立且互补的脉冲宽度调制(PWM)信号的电路。该系统允许用户单独调整每一路PWM信号的占空比和频率,适用于电机控制、LED调光等应用领域。 如何利用STM32通用定时器实现输出两路占空比和频率可调的互补PWM?当高级定时器资源有限时,可以采用通用定时器(General-purpose timers)来实现互补PWM输出,这不失为一种有效的方法。
  • STM32 PWM 程序
    优质
    本段代码提供了一个在STM32微控制器上配置PWM信号输出的方法,允许用户灵活调整PWM信号的频率与占空比,适用于电机控制、LED亮度调节等多种应用场景。 此程序基于STM32CubeMX和Keil开发,并同步《STM32初学入门笔记(2):STM32CubeMX配置STM32输出可调PWM方波》的内容。具体内容请参考相关博客文章。
  • STM32下生成个不且无PWM
    优质
    本文介绍了如何利用STM32微控制器的定时器模块,在比较模式下配置产生两个具有不同频率、且占空比为零的脉冲宽度调制(PWM)信号的方法。 如何使用STM32定时器的比较模式来输出两个频率不同且占空比不同的PWM波?
  • STM32PWM配置
    优质
    本文章介绍了如何在STM32微控制器上设置一个能够产生四个通道、具有可调节占空比特性的PWM波形的定时器。通过深入解析硬件特性与编程技巧,为工程师提供了实现灵活控制电机驱动或LED调光等应用场景的具体方法。 STM32定时器可以输出四路PWM波,并且这些PWM波的占空比是可以调节的。
  • 基于STM32F334 HRTIM生成三PWM.zip
    优质
    本项目基于STM32F334芯片,利用HRTIM高级定时器模块生成三组独立且可调节占空比的互补型PWM信号,适用于电机控制等领域。 STM32F334系列微控制器是STMicroelectronics公司推出的高性能、低功耗的32位微控制器,在工业控制及自动化设备等领域有着广泛应用。本段落将重点讨论如何利用其内置高级实时定时器(High Resolution Timer,HRTIM)生成三路互补PWM波形,并介绍这些波形占空比可调的方法。 首先需要了解HRTIM的基本结构和功能:这是一个非常灵活的计时工具,能够为多个通道提供独立的计时与PWM输出。在STM32F334中,通常配置一个主定时器及五个实例以实现上述目的。对于电机驱动应用而言,互补PWM输出模式尤为关键,这种技术有助于确保电流平滑过渡并减少电磁干扰。 要利用HRTIM生成三路互补PWM波形,请按照以下步骤操作: 1. **初始化HRTIM**:选择合适的时钟源,并设定预分频器值以达到所需的PWM频率。同时开启HRTIM及其相关定时器实例。 2. **配置定时器实例**:通常需要使用三个定时器实例(如TIM1、TIM2和TIM3)来实现三路互补PWM输出,每个实例应设置为PWM模式,并设定死区时间以防止换相期间的短路现象。 3. **设定PWM波形参数**:通过调整比较寄存器值来确定每一路PWM信号的周期与占空比。这些数值决定了高电平和低电平持续的时间长度。 4. **配置输出映射**:将定时器输出引脚正确地连接到微控制器GPIO端口,确保所选端口支持互补输出功能。 5. **动态调整占空比**:通过修改比较寄存器值实现在运行时对PWM波形的占空比进行实时调节。这对于需要精细控制电机速度的应用非常关键。 6. **启动和控制PWM信号**:在完成上述配置后,可以启动HRTIM并通过读写相关寄存器或使用HAL库函数来管理PWM输出的状态及参数调整。 7. **实施安全保护措施**:启用故障检测功能(如过流保护)以确保系统稳定运行。当检测到异常情况时自动停止PWM信号的传输是保障设备正常工作的关键步骤之一。 通过正确配置和编程,STM32F334系列微控制器上的HRTIM能够轻松生成三路互补且占空比可调的PWM波形,这对于电机控制及其他需要精密速度调节的应用至关重要。
  • STM32PWM入捕获用于计算PWM
    优质
    本文章介绍如何使用STM32微控制器中的定时器模块来捕捉外部PWM信号,并通过输入捕获模式精确测量其占空比与频率,为工程师提供了一种有效的方法来处理工业自动化及电机控制等领域中常见的脉冲宽度调制信号。 使用CubeMX配置生成,并采用HAL库作为底层支持,便于快速上手。
  • STM32F4生成四PWM
    优质
    本文介绍了如何使用STM32F4微控制器配置其内置定时器模块,以产生四个独立的PWM信号,每个信号具有不同的频率和占空比。 在stm32F4单片机的高级定时器TIM8上生成四路独立且具有不同频率和占空比的PWM信号输出,并已对关键环节进行了详细注释,便于大家在项目中应用并避免一些常见的问题。
  • 利用STM32F103单片机TIM3产生四PWM
    优质
    本项目基于STM32F103单片机,运用TIM3通用定时器模块,实现四路独立PWM信号的同时生成,并支持对各通道频率及占空比的灵活调整。 使用STM32F103单片机的通用定时器TIM3从PA6、PA7、PB0、PB1生成四路PWM信号。代码包含详细的注释,方便直接使用,并且可以移植到其他容量的单片机上,如ZET6等。