Advertisement

激光雷达技术及其应用。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
火池激光雷达,该技术源于美国麻省理工学院林肯实验室(MIT)在60年代末的研发。随后,在70年代初,林肯实验室成功展示了火池雷达精确追踪卫星的卓越能力。到了80年代末,火池激光雷达系统升级为采用一台高稳定性的二氧化碳激光器作为其信号发射源,并利用一台窄带二氧化碳激光放大器进行信号增强。该系统还配备了一个1.2米孔径的望远镜用于发射和接收激光信号。此外,氩离子激光与雷达波束相结合,旨在对目标进行精确的角度跟踪,同时雷达波束则负责收集目标距离信息以及多普勒影像数据,并实时进行处理和显示。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 火池——
    优质
    《火池激光雷达》一书深入探讨了激光雷达技术原理及其在自动驾驶、环境监测等领域的广泛应用,为读者提供了全面的技术解析和行业洞察。 火池(Firepond)激光雷达是由美国麻省理工学院林肯实验室在20世纪60年代末研制的。70年代初,该实验室展示了火池雷达精确跟踪卫星的能力。到了80年代晚期,改进后的火池激光雷达使用一台高稳定性的CO₂激光器作为信号源,并通过一个窄带CO₂激光放大器进行放大。频率由单边带调制器调节。它配备了一个孔径为1.2米的望远镜用于发射和接收信号。此外,还采用了一种氩离子激光与雷达波束结合的方式来进行目标角度跟踪,而雷达本身则负责收集距离-多普勒图像,并进行实时处理及显示。
  • -PPT版讲解
    优质
    本PPT旨在全面介绍激光雷达技术的基本原理、工作方式及其在自动驾驶、机器人导航等领域的应用,并探讨其未来发展趋势。 激光雷达技术利用激光束来测量距离,并通过精确的扫描机制构建出周围环境的三维图像。其工作原理基于时间飞行法或相位变化法:发射器向目标发送一系列脉冲,接收器捕捉反射回来的时间差或者频率差异以确定物体的距离和位置信息。此外,旋转式或多线激光雷达可以提供全方位视角的数据采集能力,从而实现对复杂环境的全面感知与分析。 这种技术广泛应用于自动驾驶汽车、机器人导航以及地形测绘等领域中,在提高精度的同时降低了成本并增强了系统的可靠性和安全性。
  • 探地
    优质
    探地雷达技术是一种非破坏性的地球物理探测方法,通过发射高频电磁波来获取地下结构信息。广泛应用于道路、桥梁检测及考古调查等领域,有助于提高基础设施安全和文化遗产保护水平。 《探地雷达方法与应用》由李大心著,主要讲述了探地雷达的基本原理及其在各个领域的应用情况。
  • 测量与分析
    优质
    本文章深入探讨了激光雷达(LiDAR)技术在地形测绘、自动驾驶及环境监测等领域的应用,并对其进行详细的技术分析和未来展望。 最初出现的测距系统主要功能是测量距离,并具有高角、高分辨率以及抗干扰性强的特点,使其在许多领域得到广泛应用。结合机载定位系统后,可以实现对地表进行实时精确获取的能力。这种搭载式设备能够穿透部分树木遮挡物,直接获取地面三维信息。 激光雷达测量系统的构成包括硬件和软件两大部分。硬件方面主要包括三维激光扫描仪、速度传感器、微型计算机以及数据传输装置等;而软件则涵盖了数据采集处理、通信管理及三维重建与可视化等功能模块,最终输出结果性内容。根据具体应用领域不同,会配备不同的功能模块如工程管理系统、数据采集系统和三维显示平台等。
  • 的工作原理.docx
    优质
    本文档探讨了激光雷达技术的基本工作原理,并介绍了其在自动驾驶、机器人导航及环境监测等领域的广泛应用。 激光雷达是一种先进的传感器技术,在自动驾驶车辆、机器人导航以及地形测绘等领域有着广泛的应用。它通过发射激光束并接收反射回来的信号来测量距离,并利用这些数据生成周围环境的高精度三维图像。 本段落将详细介绍激光雷达的工作原理及其在不同领域的应用情况,包括但不限于:1)概述了激光雷达的基本概念和工作方式;2)阐述了其技术特点与优势;3)列举了一些典型的应用案例和技术挑战。同时结合最新的研究进展以及行业趋势对未来的前景进行了展望。 为了确保内容的全面性和权威性,在撰写过程中参考了大量的文献资料,其中包括但不限于:1)《基于激光雷达的目标识别方法》探讨了如何利用该设备进行目标检测和分类;2)《自动驾驶车辆中的多传感器融合技术》介绍了将激光雷达与其它感知系统相结合以提高环境理解能力的方法;3)《城市环境中移动机器人导航的高效路径规划算法研究》,分析了在复杂动态场景下实现准确避障及定位的技术方案。 通过深入探讨上述主题,本段落旨在为相关领域的研究人员和从业者提供有价值的参考信息,并促进激光雷达技术的发展与创新。
  • 原理.pdf
    优质
    本PDF文档深入解析了激光雷达的工作原理和技术细节,并探讨其在自动驾驶、机器人导航和地形测绘等领域的广泛应用。 激光雷达是一种利用激光技术进行精确测量的设备。它通过发射激光脉冲并接收反射回来的信号来计算目标的距离、速度和其他物理特性。这种技术广泛应用于自动驾驶汽车、机器人导航、地形测绘以及安防监控等领域,为这些领域提供了高精度的空间位置信息和数据支持。
  • 的运动补偿
    优质
    本研究探讨了运用激光雷达进行精确测量时,如何有效实施运动补偿技术以提升数据采集准确性。通过减少移动影响,该技术增强了环境扫描和目标追踪的应用效果。 激光雷达运动补偿是智能车辆动态背景目标检测中的一个关键步骤。本段落提出了一种基于激光雷达的运动补偿算法。首先通过四元数法求解车体在上一扫描周期与当前扫描周期之间的位姿变化矩阵。其次,根据静态场景的特点及历史激光雷达数据帧生成的数据包,利用高斯混合模型对时间坐标系下的背景进行建模。考虑到高斯混合模型在动态场景下容易失效的问题,通过运动补偿将动态背景转换为静态背景,并用该方法处理时间列表中所有历史帧,在T时刻获取到运动目标的原点特征点。然后将这些特征点与当前帧中的匹配点进一步细化以确定它们的新位置。 实验结果表明,本算法成功地对背景进行了有效的估计和补偿,适用于三维环境下实时动态目标检测的应用场景。
  • 2DSLAM程序仿真_matlab_SLAM_SLAM_SLAM
    优质
    本项目基于MATLAB开发,运用2D激光SLAM算法进行机器人定位与地图构建的仿真研究。通过模拟激光雷达数据,实现同步定位与建图(SLAM)功能。 一个激光SLAM的MATLAB仿真程序,代码配有详细解释,非常有助于学习SLAM。
  • AGVSLAM导航定位
    优质
    AGV激光雷达SLAM导航定位技术是一种先进的自动化物流解决方案,通过激光扫描构建环境地图,并实时精确定位移动机器人,实现高效、灵活的自主导航。 AGV自主行走主要涉及三个关键问题:“在哪里?”、“要去哪?”以及“怎么去?”。其中,“在哪里?”指的是定位;“要去哪?”则是路径规划;而“怎么去?”则涉及到导航。解决了这三个问题,基本上就实现了AGV的自由行走。 传统定位和导航方式(如电磁导航、磁条导航)有其优缺点,这些方案的优点与局限性都很明显。相比之下,采用二维码或反光板等人工预设特征来进行更灵活的定位方法更为常见,典型的例子是Amazon公司使用的Kiva系统。