Advertisement

PCB技术下的15W三路输出DC/DC模块电源设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于在PCB技术框架内开发一款高效能、低功耗的15W三路输出DC/DC模块电源。设计旨在满足多种电子设备对电力供应的需求,强调小型化与集成度的同时确保高稳定性及可靠性。通过优化电路布局和选择高性能组件,实现高效的能量转换,并减少电磁干扰。该设计方案为便携式电子产品、工业控制等应用提供了可靠的电源解决方案。 摘要:本段落详细介绍了利用UC3843控制小功率多路输出DC/DC模块电源的设计过程,并重点讨论了在设计这类电源过程中与单路输出的不同之处。文章还详尽地解释了新型芯片UC3843的外围电路参数设置,提供了满足各项性能指标所需的变压器和耦合电感的具体工程设计方案。 关键词:DC/DC变换器;多路输出;耦合电感 引言指出,随着技术的进步与发展,DC/DC模块电源已被广泛应用于微波通讯、航空电子设备、地面雷达系统、消防装备以及医疗仪器等多个领域。在这些应用场景中,常常需要一种能够提供多种不同电压的电源解决方案。例如,在单片机智能控制系统内,单片机通常要求5V的工作电压,而运放集成电路则可能需要12V的供电条件。因此,设计者面临着如何有效地实现多路输出电源的任务,并确保其性能满足特定应用的需求和标准。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PCB15WDC/DC
    优质
    本项目专注于在PCB技术框架内开发一款高效能、低功耗的15W三路输出DC/DC模块电源。设计旨在满足多种电子设备对电力供应的需求,强调小型化与集成度的同时确保高稳定性及可靠性。通过优化电路布局和选择高性能组件,实现高效的能量转换,并减少电磁干扰。该设计方案为便携式电子产品、工业控制等应用提供了可靠的电源解决方案。 摘要:本段落详细介绍了利用UC3843控制小功率多路输出DC/DC模块电源的设计过程,并重点讨论了在设计这类电源过程中与单路输出的不同之处。文章还详尽地解释了新型芯片UC3843的外围电路参数设置,提供了满足各项性能指标所需的变压器和耦合电感的具体工程设计方案。 关键词:DC/DC变换器;多路输出;耦合电感 引言指出,随着技术的进步与发展,DC/DC模块电源已被广泛应用于微波通讯、航空电子设备、地面雷达系统、消防装备以及医疗仪器等多个领域。在这些应用场景中,常常需要一种能够提供多种不同电压的电源解决方案。例如,在单片机智能控制系统内,单片机通常要求5V的工作电压,而运放集成电路则可能需要12V的供电条件。因此,设计者面临着如何有效地实现多路输出电源的任务,并确保其性能满足特定应用的需求和标准。
  • DC-DC
    优质
    多路输出DC-DC电源是一种能够将单一输入电压转换为多个不同输出电压的电力变换装置,广泛应用于通信、计算机和工业自动化等领域。 一款实用的DC-DC电源设计结构简单、成本低廉。希望大家能够提出宝贵的意见进行指正。
  • 12V 入,5V 3A DC-DC 方案
    优质
    本产品为一款高效的DC-DC模块电路方案,支持12V输入并提供稳定的5V/3A输出。适用于各种电子设备的小型电源转换需求。 采用TI TPS563200芯片设计的电路板输入电压范围为4.5V到17V,输出固定电压为5V(可通过焊接不同反馈电阻来调整),最大电流输出可达3A。该电路板尺寸为23mm*24mm。
  • DC-DC.zip_DC-DC_DC-DC图_ DC原理图_PCB_dc-dc PCB
    优质
    本资料包提供详细的DC-DC电源设计方案,包含多种DC-DC电路图和原理图。内容涵盖从基础理论到实际PCB布局技巧的全面指导,助力工程师优化电力转换效率与稳定性。 这是一份2011年国赛设计方案中的DC转DC电路原理图及PCB图。
  • DC/DC参数分析
    优质
    本文章主要探讨了DC/DC电源模块的关键参数及其对整体性能的影响,深入解析了效率、稳定性等核心指标。旨在为工程师提供实用参考和技术指导。 表1展示了SR系列及其他DC/DC电源模块的参数供参考。
  • 基于MC34063DC-DC
    优质
    本项目介绍了一种采用MC34063芯片实现高效DC-DC转换的设计方案,适用于多种电压变换需求。 当使用MC34063或IRM03A集成电路构建标准的DC-DC转换器时,可以实现以下三种典型电路:极性反转、升压以及降压。对于这些外围元件参数的自动计算方法是,在左中部框中输入所需的参数后点击“进行计算并且刷新电路图”按钮,系统将自动生成所有相关元件的具体数值和标准电路图纸,从而简化设计过程并提高效率。 需要注意的是,如果设定的参数超出MC34063的工作极限范围,则会弹出警告窗口提示用户调整这些值。特别地,在输入极性反转电压时,请在指定数字前加上负号表示反向输出,例如-5V。 这种集成电路适用于多种DC到DC电源变换应用场合,并且具有价格实惠、易于采购的特点。具体来说,其效率分别为:极性反转最高可达65%,升压模式下可以达到90%的峰值效率,而降压模式则为80%左右。
  • 高效94%TPS54202 DC/DC-方案
    优质
    简介:本文详细介绍了一种高效的TPS54202 DC/DC电源模块设计方案,实现高达94%的转换效率,提供详细的电路图和参数设置建议。 DC/DC电源模块概述:该电源模块采用TPS54202芯片,尺寸为10.5mmx14.5mm,效率高达94%,具有低电磁干扰(EMI)特性,适用于家电应用中取代低压降稳压器(LDO)。高效率减少了对散热器的需求,并实现了更小、成本更低的解决方案。较高的电流容量支持增加额外功能(如WiFi和传感器)。高效率及低电流消耗有助于满足严格的能效标准。 TPS54202芯片是一款输入电压范围为4.5V至28V的同步降压转换器,提供高达2A输出电流,并内置两个集成式开关FET。该器件具备内部环路补偿和软启动功能,减少了外部组件数量。采用SOT23封装及集成MOSFET技术提高了功率密度,在PCB上占用空间小。 DC/DC电源模块电路特性包括:5V稳压输出、高达1A的负载效率达94%;待机电流为1.6μA,空载电流76μA。外形紧凑(小于TO-220封装),尺寸仅为10.5mmx14.5mm,在满负荷条件下温度上升不超过35℃,无需额外散热器。 电路设计参数如下: - 输出电压:5V - 输入电压范围:6.5V至20V - 最大输出电流:1A - 输出功率:5W 该模块为非隔离型DC-Buck拓扑结构。
  • DC/DC转换器在中调整方法
    优质
    本文探讨了DC/DC转换器在现代电源系统中的应用及其调节输出电压的技术原理和方法。 概要:在DC/DC转换器的应用回路中,输出电压需要通过外部控制进行调节,这种需求通常出现在由CPU芯片控制的数字电路中。下面将分析使用CPU控制D/A转换器来实现整个电路原理的方法,其中D/A转换器采用的是电压输出类型。 选择FB类型的DC/DC转换器(可通过外接电阻调整输出电压大小),其FB端子的电压可以设定为1V或0.9V以满足不同需求。 基本电路框图: 例子中,输出电压范围是0.5V到3.0V。D/A转换器具有8位分辨率和每LSB 10mV的精度。当D/A转换器满量程时其值为255;此时它的输出电压范围是从0V至2.5V。 在该电路中,设定使用了特定的元器件(具体信息见相关图示)。
  • DC-DC转换器图与PCB
    优质
    本项目专注于DC-DC转换器的设计,涵盖详细电路图及PCB布局。旨在提供高效、稳定的电源解决方案,适用于各种电子设备。 基于LM5160的Fly-Buck DC-DC转换器能够提供隔离电压输出,因此也被称为隔离降压转换器。一个简单的降压转换器加上另一个绕组电感形成耦合电感,并且加入肖特基二极管和电容器后就构成了飞降压转换器。该设计中,电感的一侧作为初级部分,另一侧为次级部分。这种转换器适用于需要由单个电源产生多个输出电压的应用场景,例如+-5V、+-9V等可以使用单一的Fly-Buck转换器来创建。此外,它是一种低功耗和低电磁干扰(EMI)的降压解决方案。
  • DC-DC图及PCB
    优质
    本资源提供详细的DC-DC转换器电路设计图纸及其对应的PCB布局文件,适用于电子工程师和爱好者进行电源管理模块的设计与开发。 DC-DC转换器是一种电力电子设备,用于将一个直流电压水平转换为另一个不同的直流电压水平,在电源管理、电池供电设备以及汽车电子系统等领域有着广泛的应用。 1. **DC-DC转换器类型**:常见的种类包括降压(Buck)、升压(Boost)、升降压(Buck-Boost)、反相(Inverting)和SEPIC等。每种类型的转换器都有特定应用场景及效率优势。 2. **工作原理**:通过控制开关元件如MOSFET或IGBT的通断状态,DC-DC转换器能够改变电感器或电容器中的能量存储,从而实现电压变换。在连续导通模式(CCM)和断续导通模式(DCM)下,其工作方式有所不同。 3. **电路图分析**:通常包括输入输出电容、开关元件、控制芯片以及相关的保护反馈回路等组件,这些都构成了转换器的基本架构。 4. **PCB布局设计**:在进行PCB布局时需考虑电磁兼容性(EMC)、热管理及信号完整性等因素。关键部件如开关器件和电感应远离敏感电路以减少噪声干扰,并且高电流路径要尽可能短直,降低电阻损耗。 5. **效率优化方法**:提高转换器效率可通过选择低导通与关断损失的开关元件、使用高效电感以及采用最佳控制策略来减小能耗实现。 6. **安全保护机制**:为了防止设备损坏,DC-DC转换器需要具备过流、过压和短路等保护功能。这些措施通常集成在控制芯片内或通过外部组件实施。 7. **封装与应用案例**:实际产品中,这类器件可能以模块化形式或者作为电源管理IC的一部分存在;而在高功率应用场景下,则有可能采用独立封装的形式以便于散热及定制设计。 8. **标准认证要求**:在设计过程中需要遵守相关行业规范如UL、IEC、EN等,并确保产品的安全性和可靠性。对于特定应用领域,例如医疗或工业用途的产品可能还需要额外的资质证明。 DC-DC电路图和PCB布局的设计涵盖了从基础原理到复杂工程实践多个层面的内容,是构建高效可靠转换器的关键要素之一,在实践中需要结合理论知识与实际操作经验来平衡性能、成本及安全性以满足不同应用需求。