Advertisement

智能驾驶:驾驶员风格自适应巡航算法设计及Prescan与Simulink联合仿真的上下层控制策略研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究聚焦于开发一种基于驾驶员行为分析的自适应巡航控制系统。通过Prescan和Simulink平台,实现了上下层控制策略的仿真验证,旨在提高智能驾驶的安全性和舒适性。 本段落探讨了基于驾驶员风格的自适应巡航算法设计,并通过Prescan和Simulink联合仿真技术对上层跟车策略与下层逆动力学模型进行了深入研究。其中,上层控制采用了期望跟随加速度的方法,而下层则应用了一种基于聚类拟合的加速度控制算法来优化车辆性能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PrescanSimulink仿
    优质
    本研究聚焦于开发一种基于驾驶员行为分析的自适应巡航控制系统。通过Prescan和Simulink平台,实现了上下层控制策略的仿真验证,旨在提高智能驾驶的安全性和舒适性。 本段落探讨了基于驾驶员风格的自适应巡航算法设计,并通过Prescan和Simulink联合仿真技术对上层跟车策略与下层逆动力学模型进行了深入研究。其中,上层控制采用了期望跟随加速度的方法,而下层则应用了一种基于聚类拟合的加速度控制算法来优化车辆性能。
  • 发--系统
    优质
    本项目专注于开发先进的自适应巡航控制系统,利用机器学习和传感器融合技术优化车辆在不同交通状况下的自动跟车及安全距离控制。 自适应巡航控制功能的代码参考了博世的技术。
  • 发-功要求--限速协助
    优质
    本项目专注于自动驾驶技术中的关键功能开发,包括自适应巡航控制和速度限制辅助系统,致力于提升驾驶安全性和舒适性。 在现代汽车技术领域,辅助驾驶系统(ADAS)发挥着至关重要的作用,旨在提高行车安全性和驾驶舒适性。本段落将重点探讨一种关键的辅助驾驶功能——自适应巡航控制(Adaptive Cruise Control, ACC),以及其子功能限速辅助(Speed Limit Assist, SLA)。这两个特性是智能交通系统的组成部分,帮助驾驶员更轻松地掌控车辆,并确保在道路上保持安全速度。 **自适应巡航控制(ACC)** 自适应巡航控制系统是一种先进的驾驶辅助技术,它允许汽车以预设的速度自动行驶,并根据前方车辆的距离和速度进行动态调整。这一系统的核心在于雷达传感器与车辆控制系统之间的协同工作: 1. **距离监测**:通过持续的雷达监控来测量前方车辆的位置及其相对速度,提供实时数据。 2. **速度调节**:当检测到与前车距离过近时,系统会自动降低行驶速度以保持安全间距;一旦道路畅通无阻,汽车将恢复预设的速度水平。 3. **加减速平滑处理**:确保加速和减速过程的平稳性,提高乘客舒适度。 4. **启停功能**:某些高级版本的ACC可以在交通拥堵时完全停止车辆,并在情况改善后自动重新启动。 **限速辅助(SLA)** 限速辅助是另一种重要的ADAS功能,旨在帮助驾驶员遵守道路速度限制规定。SLA系统通过整合GPS、地图数据以及识别道路标志的技术来获取当前路段的速度信息: 1. **道路限速信息收集**:利用GPS和地图数据库提供预知的限速信息,并使用摄像头实时读取路标以确认现行的最高时速。 2. **视觉提示**:当检测到速度限制变化,系统会在仪表盘上显示新的限速值;某些车辆还会通过声音提醒驾驶员注意当前的速度限制。 3. **自动减速功能**:部分SLA系统可以与ACC结合使用,在汽车尝试加速超过法定限速时进行干预。 **两者组合的效益** 当自适应巡航控制和限速辅助相结合,它们能为驾驶提供更全面的支持。例如,在高速公路或城市快速路上行驶时,车辆能够自动保持在合法的速度范围内,并且同时维持安全距离。这不仅减少了驾驶员的压力,还能显著降低由于超速和追尾引起的交通事故。 **技术挑战与未来发展方向** 尽管ACC和SLA已经取得了许多进步,但仍面临一些技术和环境上的挑战,例如恶劣天气条件下的传感器性能问题以及复杂交通状况下决策的准确性等。未来的研发趋势可能包括更精确的传感器融合、更高的自动化水平及车联网(V2X)通信集成,以实现更加智能且自主化的驾驶辅助。 自适应巡航控制和限速辅助是ADAS的重要组成部分,它们利用先进的传感技术和算法来帮助驾驶员更好地管理车辆,并提升行车的安全性和舒适性。随着技术的进步,我们可以期待这些功能在未来变得更加智能化并为我们的出行带来更多便利与安全保障。
  • 基于行为问卷分析
    优质
    本研究通过设计并发放针对驾驶员行为的问卷调查,收集大量驾驶者的行为数据,旨在深入分析和分类不同的驾驶风格。 本研究旨在探讨驾驶员行为模式及其分类特征,并以此为基础为更高级的驾驶辅助系统提供支持。在北京对225名非职业司机进行了标准驾驶员行为问卷(DBQ)调查,以获取他们的自我报告数据。通过统计分析验证了该问卷的有效性,并采用验证性因素分析来探索潜在的因素结构。 从问卷中提取出四个关键特征:速度优势、空间占用、竞争权和竞争空间优势,用以量化驾驶者的特性。基于模糊C均值算法,利用这四项指标进行驾驶员分类研究并确定合理的类别数量。通过统计方法评估不同类别的分布情况,并将其与受访者过去五年内是否发生过交通事故的报告结果相比较。 结果显示,这些分类能够准确反映实际驾驶状况。此外,还分析了人口统计数据和驾驶行为类型之间的关联性:女性比男性更倾向于谨慎驾驶;而年龄较大且经验较少的新手司机则表现出更加保守、适度的行为模式。
  • 丛书之汽车决PPT.rar
    优质
    本资源为《自动驾驶丛书之自动驾驶汽车决策与控制》配套PPT,涵盖车辆决策算法、控制系统等内容,适合技术学习和研究参考。 自动驾驶系列丛书包含关于自动驾驶汽车决策与控制的PPT内容。
  • 规划仿Carla_载.zip
    优质
    本资源包含用于自动驾驶车辆路径规划和控制系统开发的代码及数据文件,基于Carla开源平台进行仿真测试。 自动驾驶规划控制算法仿真Carla下载.zip
  • 关于论文
    优质
    本文深入探讨了自动驾驶系统中的关键问题——决策算法的研究进展。通过分析现有技术的局限性,并提出创新性的解决方案,旨在提升未来车辆在复杂交通环境下的安全性和效率。 介绍智能驾驶决策方向的论文中包含了一些主流决策算法的研究成果。
  • 汽车换道轨迹规划跟踪
    优质
    本研究聚焦于开发高效的算法与模型,以优化自动驾驶汽车在复杂交通环境中的车道变换行为,涵盖轨迹规划和精准控制技术。 首先分析了自动驾驶车辆在换道过程中的行为特性及其与周围人工驾驶车辆的交互模式,并基于效用理论建立了分层Logit模型来模拟换道决策过程的主要方面——目标车道选择及目标车道间隙接受情况,提取影响这些决策的关键参数并利用极大似然估计方法进行标定。通过仿真分析了不同换道策略对车辆运行特性的影响。 其次,在确保自动驾驶车辆安全换道的前提下兼顾乘客舒适度,研究根据可能发生的临界碰撞状态推导出初始时刻的最小纵向安全距离,并采用多项式函数曲线规划轨迹,建立了四种不同的换车道模型:自由换道、原车道有前车障碍时的换道、目标车道存在前车阻碍情况下的换道以及面对后方车辆威胁的目标车道路径选择。对于部分模型进行了仿真测试以验证其有效性。 最后推导了自动驾驶汽车在执行换道动作过程中的运动学和横向动力学公式,通过结合预测控制与滑模控制技术设计了一套有效的轨迹跟踪控制系统来确保精确的行驶路线遵循性。 ### 自动驾驶车辆路径选择及轨迹规划研究 #### 一、背景和目标 随着科技的发展,自动驾驶汽车正逐渐成为汽车行业的新方向。在这一背景下,安全高效的车道变换对于实现完全自主导航至关重要。本项目致力于深入探究自动驾驶中换道行为的关键影响因素,并通过构建合理的决策模型与精确的路径规划算法来确保车辆能够在复杂交通环境中顺利执行换道操作。 #### 二、决策过程建模 ##### (一)交互分析和模型设计 在进行车道变换时,必须仔细考虑周围人工驾驶车辆的行为。基于效用理论建立了一个分层Logit框架用于描述自动驾驶车的路径选择及目标路段间隙接受度评估机制,其中包含两个主要方面:确定最佳的目标道路以及判断该道路上是否有足够的空间以安全完成换道动作。 ##### (二)模型参数优化 - **车道选取**:基于车辆当前位置和速度等关键因素计算出各潜在目标路线的价值,并据此做出选择。 - **间隙接受度评估**:通过效用理论来量化不同间距下的价值,从而决定是否可以利用现有的道路空间执行换道。 #### 三、路径规划策略 为了保证自动驾驶车能够安全地完成车道变换任务,在考虑避免碰撞的同时还需注重乘客的舒适体验。为此我们提出了一系列轨迹模型: - **自由模式**:当周围没有障碍物时允许车辆自主选择最优的时间和路线进行变道。 - **前方有障碍情况下的路径调整策略**:这种情况下,需要根据前车的速度与位置信息动态地调节换车道时机。 - **目标道路存在前行阻碍的解决方案**:在此情形下不仅要考虑自身与先行者的距离还要评估其状态以防止碰撞的发生。 - **后方威胁处理机制**:面对来自后面车辆的压力时提前规划好路径确保有足够的空间执行变道动作。 所有模型都采用了多项式函数曲线进行轨迹设计,保证了路线的连续性和平滑性,并通过实验验证它们的有效性。 #### 四、跟踪控制方案 为了使自动驾驶车能够准确跟随预设轨道行驶,在研究中还探讨了如何利用预测控制和滑模技术来开发出一套高效的路径追踪控制器。这包括建立车辆在执行变道操作过程中的运动学方程与横向动力模型,并在此基础上设计相应的控制系统以确保精确的跟踪性能。 通过上述对自动驾驶汽车换车道过程中决策行为、轨迹规划及跟踪控制等方面的研究,本项目不仅为未来智能交通系统的发展提供了重要的理论支持和实用技术方案。
  • PreScan仿软件用户手册
    优质
    《PreScan自动驾驶仿真软件用户手册》为用户提供详尽的操作指南和教程,帮助读者全面了解并掌握PreScan在开发自动驾驶系统中的应用。 Prescan 是该公司自主研发的一款基于智能驾驶 V 型开发流程的核心工具,它是一款基于物理模型的仿真平台,广泛应用于汽车高级驾驶辅助系统 (ADAS) 和自动驾驶系统的开发中。该软件支持多种传感器技术,包括雷达、激光雷达、摄像头、GPS 以及车辆到车辆(V2V)和车辆到基础设施(V2I)通信技术的应用。Prescan 支持从模型在环(MIL)、实时的软件在环(SiL) 到硬件在环 (HiL) 等多种使用模式。