Advertisement

STM32微控制器进行MODBUS串口通信。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过采用modbus协议的变体,该系统能够支持xcom协议的传输,并提供四种不同的校验机制,包括校验和、异或、CRC8和CRC16。为了便于实现,开发提供了两个独立的软件模块:首先,实验X00 MODBUS - 串口主机.rar 实现了MODBUS主机功能,它通过串口1持续地发送数据;其次,实验X01 MODBUS - 串口从机.rar 则作为MODBUS从机,同样通过串口1进行持续的数据接收。此外,该代码集成了与XCOM协议的传输功能,其中XCOM作为主机端进行通信。测试环节需要使用三根杜邦线连接两个开发板的串口1端口,具体连接方式为PA9与PA10互联(PA9->PA10 和 PA10->PA9),同时需要建立地线连接。值得注意的是,从机代码也具备与XCOM协议通信的能力,并且XCOM在此处担任主机角色。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32MODBUS
    优质
    本简介探讨了如何在STM32微控制器上实现基于MODBUS协议的串行通讯技术,涵盖硬件配置、软件编程及调试技巧。 使用Modbus协议的变种版本支持XCOM协议传输,并提供四种校验方法(校验和、异或、CRC8和CRC16)。该代码分为两个部分:第一部分是实验X00 MODBUS - 串口主机,作为MODBUS主机通过串口1不停地发送数据;第二部分是实验X01 MODBUS - 串口从机,作为MODBUS从机通过串口1接收数据。此代码还支持与XCOM协议的通信,在这种情况下,XCOM担任主机角色。 测试时需要使用三根杜邦线连接两个开发板的串口1(对接:PA9->PA10 , PA10->PA9,并且要共地线)。从机代码还可以实现与XCOM协议进行通信的功能,此时由XCOM作为主机。
  • C#上位机STM32电机
    优质
    本项目介绍如何使用C#编写上位机软件并通过串口通信协议控制连接到STM32微控制器的步进电机,实现精密运动控制。 本项目使用VS2012进行C#编程开发。该项目包为工程压缩文件,并非可直接运行的exe文件。其实现了通过串口实时控制STM32来驱动步进电机正转、反转以及调整转动速度的功能,同时支持固定角度旋转操作。每个程序语句后面都有详细的解释说明,适合初学者学习C#串口通信技术;对于有经验的人来说可能过于基础。
  • LabVIEW和STM32
    优质
    本项目探讨了如何使用LabVIEW软件平台实现与基于STM32微控制器的数据传输及设备控制,重点介绍了串行通讯协议的应用及其编程实践。 1. 电机测速 2. STM32与LabVIEW串口通信
  • LabVIEW MODBUS
    优质
    本项目专注于使用LabVIEW软件实现与MODBUS设备的串行通信编程技术,旨在通过图形化编程界面简化复杂的通信协议开发过程。 LabVIEW串口通信资源文件包含了用于实现数据传输的工具和库。这些文件可以帮助用户轻松地设置和配置串行端口参数,并进行读取与发送操作。通过使用LabVIEW提供的图形化编程环境,开发者可以快速构建功能强大的串口应用程序,适用于各种工业控制、仪器仪表以及嵌入式系统等领域。
  • VB.NETModbus十六小程序代码
    优质
    这是一个基于VB.NET编写的用于实现通过串口进行Modbus协议十六进制数据通信的小程序源代码。 本案例使用VB.net开发了一个用于收发Modbus协议格式数据的16进制数据串口小工具。重点在于VB.net中如何将16进制输入数据转换为串口Write()函数所需的参数(包括两种不同的转换方式),以及如何利用串口读取事件和Read()函数获取的数据结果,并将其转化为16进制字符串进行显示。该案例综合运用了SerialPort控件及各种类型的数据转换技术,具体实现细节可参考文章《VB.NET实现串口16进制数据收发》中的描述。
  • 电机的
    优质
    本项目探讨了通过串口通信技术实现对步进电机的精准控制方法,包括硬件连接与软件编程两大部分。旨在提高电机控制系统的灵活性和便捷性。 上位机通过串口发送数据给数字量输出模块,以控制步进电机的运动。
  • LabVIEW Modbus LabVIEW
    优质
    本教程专注于使用LabVIEW进行Modbus协议和串行通讯编程,涵盖从基础到高级的技术应用与实现。 LabVIEW是一种图形化编程语言,由美国国家仪器(NI)公司开发,并广泛应用于测试、测量和控制系统设计等领域。在工业自动化领域内,Modbus协议因其允许设备间的数据交换而被广泛应用。本段落将深入探讨如何在LabVIEW环境中实现Modbus协议,并详细讲解串口通信的应用以及两种常见的校验码——CRC(循环冗余校验)和LRC(纵向冗余校验)的实现方法。 首先来看一下LabVIEW中的串口通信功能。RS232是一种常用的串行通信接口标准,常用于连接计算机与各种设备如PLC、数据采集模块等。在LabVIEW中,“串口”工具可用于配置和管理这些串行通信参数,包括设置波特率、数据位数、停止位以及奇偶校验等,并支持打开或关闭串口等功能操作。通过创建自定义的串口VI(虚拟仪器),用户可以构建实时与外部设备进行交互的应用程序。 接下来我们讨论Modbus协议的相关内容。该协议规定了一种主从通信模型,其中一台设备作为主机发起请求命令,其他设备则扮演响应者的角色。此外,它还支持多种数据类型的操作如寄存器读写和线圈状态控制等。在LabVIEW中实现这一协议通常需要理解并构建相应的Modbus报文结构,这包括功能码、地址信息、实际的数据内容以及校验码部分的配置与处理工作。 对于确保传输过程中数据完整性和正确性的需求,在Modbus通信中有两种常见的错误检测机制:CRC(循环冗余校验)和LRC(纵向冗余校验)。其中,CRC是一种强大的方法,通过计算特定二进制值并将其附加到数据末尾来验证完整性。LabVIEW内置的函数或自定义算法可用于实现这一过程;而LRC则相对简单一些,它通过对所有位进行加法运算然后取反得到结果的方式完成校验操作。 为了进一步了解如何在LabVIEW中编写和调试串口通信及Modbus协议相关程序的具体步骤与示例代码,《基于LabVIEW的Modbus协议两种校验码实现方法》文档提供了详细的指导。同时,另一份《Labview串口通讯基础指南》则涵盖了更多关于该软件平台下的基本知识和技术技巧。 综上所述,利用LabVIEW结合串口通信和Modbus协议的能力可以帮助开发者构建高效的设备间数据交换方案,在工业自动化项目中发挥重要作用。
  • STM32LED灯
    优质
    本项目介绍如何使用STM32微控制器通过串口接收指令来控制LED灯的状态(点亮或关闭),适用于嵌入式系统开发入门学习。 STM32串口控制LED灯是嵌入式开发中的基础技能之一,它涵盖了微控制器、串行通信以及外围设备之间的交互操作。在这个实验项目中使用的硬件平台为STM32F103ZET6,这是一款基于ARM Cortex-M3内核的高性能微处理器,并具备多种外设接口。 理解串口通信的基本原理是这个项目的前提条件之一。通常所说的“串口”指的是UART(通用异步收发传输器),这是一种同步串行数据交换技术,在STM32开发中常被配置为RS232标准,以确保兼容性与广泛的设备连接需求。RS232是一种广泛应用的标准接口协议,支持通过单线进行双向的数据传送。 在使用STM32F103ZET6时,我们需要设置UART的参数来适配不同的通信环境和应用要求。比如我们可以将波特率设定为9600bps、数据位设为8bit、停止位定为一位,并且不启用奇偶校验功能;这些配置可以通过STM32 HAL库或LL库实现。 为了处理串口的数据收发,我们需要编写中断服务程序来响应接收到的信号。当有新的字符到达时,对应的UART会触发一个硬件中断,在这个过程中我们解析并执行相应的命令或者控制逻辑(例如通过特定ASCII码指令开启LED灯);同时也可以利用同样的机制发送反馈信息给上位机。 在物理层面上,我们需要配置STM32F103ZET6的GPIO端口为推挽输出模式来驱动外部设备如LED或蜂鸣器。比如我们可以选择PA0、PB5等引脚作为控制信号线,并通过更改这些GPIO端口的状态来实现对相应外围器件的操作。 为了使程序结构更加清晰合理,我们需要定义一系列命令解析函数用于处理接收到的指令流。这些函数负责将输入字符转换为具体的操作请求(例如开关LED灯),并且需要具备一定的容错机制以避免因非法或无效的输入而导致系统异常情况的发生。 在实际应用中,“STM32串口控制LED”不仅适用于基础示例程序,还可以扩展到远程控制系统和监控平台。通过建立与上位机之间的通信链路,可以实现实时监测设备状态并进行远端调试及维护工作等复杂功能需求。 综上所述,“使用STM32微控制器实现串口控制LED灯”的实验内容涉及到了嵌入式系统开发中的多个关键知识点和技术点包括但不限于:硬件平台的选择与配置、通信协议的设定和优化、中断响应机制的设计以及GPIO接口的应用。这项实践不仅能够帮助学习者掌握基础技能,还能为后续更深层次的技术挑战打下坚实的基础。
  • STM32舵机
    优质
    本项目介绍如何使用STM32微控制器通过串口通信协议精确控制伺服电机(舵机)的角度和运动。 主控STM32F103C8T6 舵机连接: GND -> GND 电源 -> 3.3V 信号线 -> PA1 UART配置: 波特率:115200 数据位:8 停止位:1 无校验位(N) RX引脚:PA9 TX引脚:PA10 控制指令: 发送“z”,舵机转到30度。 发送“s”,舵机转到90度。 发送“y”,舵机转到150度。
  • 使用MATLAB与STM32及绘图
    优质
    本项目介绍如何利用MATLAB和STM32微控制器通过串行接口实现数据传输,并在MATLAB中实时绘制接收到的数据。 如何在MATLAB与STM32之间进行串口通信并绘制图表。