Advertisement

反激开关电源中输出电容的计算方法在电源技术中的应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章介绍了反激式开关电源中输出电容的计算方法及其重要性,并探讨了其在提高电源效率和稳定性方面的实际应用。 1. 设定开关工作频率为60kHz,并设定输出电流Io为1A;根据变压器参数及输入、输出电压计算得出实际最大占空比Dmax为0.457。 2. 计算关断时间Toff和导通时间Ton: Toff = 1/f * (1 - Dmax) = 9.05微秒 Ton = 1/f * Dmax = 7.62微秒 3. 根据反激式电路的输出波形,计算所需输出电容量。 4. 输出电压在t1到t2时间段内下降。假设输出纹波为120mV,则: 5. 纹波电流通常取值范围是输出电流的5%至20%,即Inppl=20%*1A = 0.2A,这意味着每个电解电容需要承受的最大纹波电流为0.2A。因此设计满足要求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文章介绍了反激式开关电源中输出电容的计算方法及其重要性,并探讨了其在提高电源效率和稳定性方面的实际应用。 1. 设定开关工作频率为60kHz,并设定输出电流Io为1A;根据变压器参数及输入、输出电压计算得出实际最大占空比Dmax为0.457。 2. 计算关断时间Toff和导通时间Ton: Toff = 1/f * (1 - Dmax) = 9.05微秒 Ton = 1/f * Dmax = 7.62微秒 3. 根据反激式电路的输出波形,计算所需输出电容量。 4. 输出电压在t1到t2时间段内下降。假设输出纹波为120mV,则: 5. 纹波电流通常取值范围是输出电流的5%至20%,即Inppl=20%*1A = 0.2A,这意味着每个电解电容需要承受的最大纹波电流为0.2A。因此设计满足要求。
  • 基于PI Expert
    优质
    本文章探讨了利用PI Expert工具进行高效反激式开关电源的设计,并详细介绍了其在现代电源技术领域内的应用及优势。 摘要:反激式开关电源因其电路结构简单、具备安全隔离特性以及较大的输出电压范围,在电器设备中的应用非常广泛。PI Expert是由美国Power Integrations公司开发的一款用于设计开关电源的软件,使用该软件可以快速创建出可靠的开关电源设计方案。本段落基于PI Expert设计了一款提供两路输出(+5V/250mA和+12V/1A)的反激式开关电源,并通过调试验证了其良好的性能。 近年来,随着技术的进步,开关电源的发展非常迅速。相比传统的线性电源,开关电源具有体积小、重量轻、效率高、抗干扰能力强以及输出电压范围宽等优点。此外,根据是否提供电气隔离功能,可以将开关电源分为隔离式和非隔离式两大类;而在隔离式的分类中,则进一步包括正激(Forward)和反激(Flyback)两种基本拓扑结构。
  • 基于UC3845
    优质
    本文详细介绍了以UC3845为核心芯片设计的一种反激式开关电源,并探讨了其在现代电源技术领域内的应用与优势。 摘要:本段落设计了一种采用UC5845控制器的反激式开关电源电路,并详细介绍了该电路及参数的设计与选择过程。 实践证明,基于UC3845的反激式开关电源具有宽广的输入电压范围、高精度输出电压以及在不同负载条件下高效的调整效率等优点。 0 引言 由于结构简单且所需元器件较少,反激式开关电源被广泛应用于自动控制和智能仪表等领域作为其供电方案。这类电源通常使用脉冲宽度调制(PWM)技术来实现调节功能,在保持主变换器周期不变的前提下,依据输入电压或负载的变化调整功率MOSFET管的导通占空比以稳定输出电压。本段落中介绍了一种高性能固定频率电流型PWM集成控制芯片UC3845,该芯片专为离线直流至直流转换设计。
  • 基于UC3842
    优质
    本文探讨了以UC3842芯片为核心的反激式开关电源的设计与实现,深入分析其工作原理和优化策略,在电源技术领域提供了一种高效、可靠的解决方案。 摘要: 采用安森美公司的电流控制型脉宽调制芯片UC3842 设计了一款1 kW 铅酸蓄电池充电器的辅助电源电路,该辅助电源输出功率为25 W。根据相关文献设计了UC3842 的外围电路,并分析了反馈控制回路中元器件参数的计算方法。同时结合给定功率场效应管的最大耐压值设计了反激式高频变压器。将按照上述设计方案制作的样机安装到充电器控制板上后,发现该充电器在满载状态下工作稳定。实验结果显示:所制备的样机性能可靠,具备良好的静态特性和动态特性。 高频开关稳压电源因其高效率、体积小和重量轻等优势而被广泛应用。传统的开关电源控制电路通常采用电压型拓扑结构,并且仅包含输出电压单闭环控制系统。
  • 于多路单端案(一)
    优质
    本文介绍了多路单端反激式开关电源的设计方案,旨在为电源技术领域提供一种高效、灵活且成本效益高的解决方案。 本段落提出了一种基于TOP223Y多路输出单端反激式开关电源的设计方案。该方案采用了TOP Switch系列三端高频单片开关电源芯片,并配合由TL431、PC817A组成的反馈系统对外围电路进行分析,设计出一种能够提供+5 V/3 A和+12 V/1 A两种不同稳压调整权重分别为0.6和0.4的AC/DC开关电源。实验结果表明,该设计方案下的开关电源具有高效率、低纹波以及输出精度高且稳定性强的特点。 单片开关电源自问世以来,凭借其高效能、体积小、集成度高等特点,在中小功率精密稳压电源领域迅速占据重要地位。美国PI公司的TOPSwitch系列器件即是一种新型三端离线式高频单片开关电源芯片的代表之一。
  • 基于UCC28600准谐振
    优质
    本设计基于UCC28600芯片,提出了一种高效的准谐振反激式开关电源方案,适用于多种电源技术应用。 本段落提出了一种基于UCC28600控制器的准谐振反激式开关电源的设计方案。该方案分析了准谐振反激式开关电源的工作原理及实现方式,详细给出了电路设计、参数选择过程,并展示了实际工作中的开关波形。实验结果表明,所设计的准谐振反激式开关电源具有宽输入电压范围、高转换效率、低电磁干扰(EMI)以及稳定可靠的特点。采用准谐振技术显著降低了MOSFET的开关损耗,从而提高了产品的可靠性。 准谐振变换是一种成熟的技术,在消费电子产品的电源设计中被广泛应用。新型绿色电源系列控制器能够实现极低的待机功耗,典型值为150毫瓦以下。本段落将详细说明准谐振反激式转换器如何提高电源效率,并介绍使用UCC28600进行准谐振电源设计的方法和步骤。
  • 串联式储能滤波
    优质
    本文探讨了在串联式开关电源系统中,如何精确计算所需储能滤波电容器的关键参数与设计方法,以优化电路性能和稳定性。 1-2-4.串联式开关电源储能滤波电容的计算 我们从流过储能电感的电流为临界连续状态开始分析,探讨储能滤波电容C在充放电过程中的特性,并据此计算其数值。 图1-6展示了当串联式开关电源工作于临界连续电流状态下,电路中各点电压和电流的变化情况。其中Ui表示输入电压,uo是控制开关K的输出电压,Uo为电源滤波后的输出电压,iL代表流过储能电感的电流,Io则是负载上的电流。图1-6-a)显示了控制开关K的输出电压变化;图1-6-b)呈现的是储能滤波电容C充放电的过程;而图1-6-c)则描绘了流经储能滤波电感iL的变化曲线。 当串联式开关电源处于临界连续电流状态时,我们对电路的工作原理进行详细分析。
  • 单端恒压条件及其实验验证
    优质
    本文探讨了单端反激式开关电源实现恒压输出的关键技术和理论依据,并通过实验对其进行了验证。 单端反激式开关电源的工作原理如下: 1.1 原理框图 如图1所示,输入的交流电压经过整流滤波后转换为直流电压。驱动电路控制反激功率变换电路,将脉动直流电压变换成高频交流方波电压。该方波电压通过高频变压器传递到次级侧,并经由整流滤波处理得到所需的稳定直流输出电压。整个系统中,取样、脉宽调节和驱动电路共同构成了反馈回路,确保了输出电压的稳定性。 图1中的描述展示了从输入交流电转换为所需直流电的过程,包括关键组件的功能及其相互作用机制。
  • 多路馈环路
    优质
    本文探讨了在反激式开关电源设计中的多路输出反馈环路技术,分析并优化了各路输出之间的相互影响,提升了电源的整体性能和稳定性。 多路输出反激式开关电源的反馈环路设计涉及详细描述反激式开关电源的环路设计公式。这些公式对于确保电源系统的稳定性和效率至关重要。在设计过程中,需要考虑多个输出路径之间的相互影响,并优化控制策略以实现最佳性能。通过精确计算和仿真分析,工程师可以确定适当的补偿网络参数,从而改善瞬态响应、降低噪声敏感性并提高整体系统可靠性。