Advertisement

二叉堆的小根堆实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本篇文章详细介绍了如何使用数组实现二叉堆中的小根堆,并提供了插入和删除操作的算法说明。 使用模板类实现了小根堆,并在woniu_heap文件中的代码对小根堆进行了测试。其中push为插入一个元素到小根堆中,pop为删除小根堆的堆顶元素,top为取出堆顶元素。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本篇文章详细介绍了如何使用数组实现二叉堆中的小根堆,并提供了插入和删除操作的算法说明。 使用模板类实现了小根堆,并在woniu_heap文件中的代码对小根堆进行了测试。其中push为插入一个元素到小根堆中,pop为删除小根堆的堆顶元素,top为取出堆顶元素。
  • Java中排序例代码
    优质
    本段代码展示了如何在Java中通过构建最大堆来实现堆排序算法,提供了一个完整的实例,帮助理解堆排序的工作原理及其应用。 Java是目前最流行的编程语言之一,堆排序是一种在Java中常见的排序算法。本段落将详细介绍如何使用Java实现大根堆的堆排序,并涵盖大根堆的概念、建立方法以及性能分析等内容。 **大根堆的定义:** - 大根堆是一种特殊的完全二叉树结构,它满足以下条件: - 每个节点的关键字都不小于其左右子节点的关键字。 - 节点的关键字越大,则该节点越接近于树的根部。 这种特性使得大根堆在排序过程中非常有用:将数组array[0, ... , n-1]视为一个完全二叉树的顺序存储结构,通过比较父节点和子节点来找出最大值。 **建立大根堆的方法:** 为了构建大根堆,我们需要从最后一个非叶子结点开始调整。具体来说是从位置(array.length - 2) / 2 开始到0的位置进行遍历,并使用adjustDownToUp方法对每个节点进行向下调整操作以保持其为一个有效的最大堆。 **堆排序算法:** 1. 首先,通过调用buildMaxHeap函数将数组转换成大根堆。 2. 然后交换堆顶元素(即当前最大的值)和最后一个叶子结点的位置。这样就确保了序列的最大值已经找到了正确的插入位置。 3. 接下来需要重新调整剩余的子树以保持其为一个最大堆,重复上述步骤直到整个数组完全排序。 **性能分析:** - 空间复杂度是O(1),因为不需要额外的空间来存储数据结构。 - 时间复杂度在最坏的情况下也是O(n log n)。其中n表示元素的数量;建立初始的堆需要遍历所有节点,每次调整操作的时间为log n。 - 堆排序不是稳定的排序方法。 **Java实现代码示例:** ```java private int[] buildMaxHeap(int[] array){ // 构建大根堆: 将array看成完全二叉树的顺序存储结构 for (int i = (array.length - 2) / 2; i >= 0; i--) { adjustDownToUp(array, i, array.length); } return array; } private void adjustDownToUp(int[] array, int k, int length){ int temp = array[k]; for (int i = 2 * k + 1; i < length - 1 && i >= 0; i = 2 * i + 1) { if(i < length-1 && array[i] < array[i+1]){ i++; } if(temp >= array[i]) break; else{ array[k] = array[i]; k = i; } } array[k] = temp; } public int[] heapSort(int[] array){ // 将数组转换成一个大根堆 buildMaxHeap(array); for (int i = array.length - 1; i > 0; i--) { // 置换最大值到正确位置 swap(array, 0, i); adjustDownToUp(array, 0, i); } return array; } private void swap(int[] arr,int a ,int b){ int t = arr[a]; arr[a] = arr[b]; arr[b] = t; } ``` 本段落详细介绍了如何使用Java实现堆排序算法,包括大根堆的定义、建立方法以及性能分析等内容。通过提供的示例代码,读者可以深入了解和掌握这一高效的排序技术。
  • 原理及应用.ppt
    优质
    本PPT详细介绍了二叉堆的数据结构原理及其在优先队列等场景中的实际应用,涵盖构建、插入和删除操作等内容。 二叉堆的原理与应用.ppt 这份演示文稿介绍了二叉堆的基本概念、工作原理及其在实际问题中的应用。通过这份材料,读者可以深入了解如何构建和操作二叉堆,并学习到它在优先队列等场景下的具体实现方法。
  • Dijkstra算法三种方式:数组、和斐波那契 + 验报告摘要
    优质
    本实验报告探讨了Dijkstra最短路径算法通过数组、二叉堆及斐波那契堆三种不同数据结构实现的方式,分析比较其性能差异,并附有详细的实验结果与讨论。 Dijkstra算法的三种实现方式包括使用数组、二叉堆以及斐波那契堆,并附有部分实验报告的内容。
  • Java中最大(
    优质
    本篇文章介绍了如何在Java中实现最大堆和最小堆。通过使用优先队列等数据结构来高效地完成堆的相关操作,并提供了具体的代码示例进行说明。 代码仅实现了最大堆的顺序存储功能,并包括了插入、删除和筛选建立的操作。
  • 基于改进A星算法
    优质
    本研究提出了一种基于二叉堆优化的A*算法,旨在提高路径搜索效率和性能。通过改进开放列表的数据结构,有效减少了算法的时间复杂度,适用于大规模地图场景中的智能路径规划。 本源代码利用标准C++ STL中的vector、list和heap等已封装的数据结构优化了A星算法在搜索地图及检索开始列表过程中的性能,有效减少了程序的时间和空间开销。经测试,在处理20000*20000的随机障碍物地图时,路径规划部分的平均耗时约为两秒左右。
  • C语言中用A*寻路算法示例
    优质
    本示例展示了如何运用C语言在二叉堆数据结构的支持下实现高效路径搜索的A*算法,并提供具体代码示范。 二叉堆实现A*寻路算法是计算机科学中的经典路径搜索方法,它结合了Dijkstra算法与优先级队列的特性,以高效的方式寻找从起点到目标点的最短路径。在这个C语言实例中,我们看到有AStar.c、AStar.h、main.c和makefile等文件,它们分别承担不同的功能。 其中,AStar.c 和 AStar.h 文件是核心算法的具体实现与声明部分。前者包含了具体的搜索逻辑及优先级堆的数据结构定义;后者则提供了函数接口供其他程序调用。例如,在这些文件中可能定义了一个节点数据类型来存储位置信息、代价(g值)、估计的总路径成本(f值,即g值和启发式评估h值得到)以及父节点等。 A*算法中的一个关键部分是选择合适的启发函数h(n),它用于估算从当前节点n到达目标节点的成本。常见的方法包括使用曼哈顿距离或欧几里得距离作为估计依据。通过比较所有开放列表中节点的f值,二叉堆作为一种优先级队列保证了总是先处理成本最低的节点。 主文件main.c通常包含程序的主要入口点,负责初始化环境、创建初始状态并调用AStar算法来寻找路径。在这个例子中,它可能还会设定地图的数据结构,并指定起点和终点位置之后执行寻路操作。 makefile用于自动化编译过程,在Linux环境下通过运行`make`命令即可自动完成所有源文件的编译链接工作生成可执行程序。如果需要在Windows系统下进行开发,则可以将代码移植到支持C语言环境如Visual Studio中,并配置相应的构建设置来实现相同的功能。 这个实例展示了如何使用二叉堆和启发式函数来有效实施A*算法,以及它在解决路径规划问题时的优越性。通过分析此例中的具体细节,开发者不仅能深入了解该寻路算法的工作原理及其C语言编程实践方法,还能学习到跨平台代码移植的相关技巧。
  • 垛机货_V16.zap16
    优质
    堆垛机货叉_V16.zap16是一款专为自动化仓储系统设计的关键部件,能够高效、准确地完成货物的存取作业。 货叉堆垛机_V16.zap16是一款高效的仓储设备,适用于各种类型的仓库环境,能够有效提高货物存储与搬运的效率。该型号具有优良的设计和技术特点,可以满足不同客户的需求。
  • LabVIEW中栈状态机
    优质
    本篇文章探讨了在LabVIEW环境中如何高效地设计和实现堆栈数据结构,并介绍了基于状态机技术来管理和监控堆栈操作的方法。通过实例深入解析堆栈的状态转换机制,为开发者提供一种全新的视角理解和优化程序流程。 使用LabVIEW实现堆栈及其状态机的方法涉及创建一个数据结构来存储元素,并通过状态机控制堆栈的操作流程。这种方法可以有效地管理函数调用、内存分配以及其他需要后进先出(LIFO)处理的应用场景。 在LabVIEW中,可以通过编程方式定义不同的状态和转换条件来模拟堆栈的行为。例如,在“空”状态下尝试弹出操作时会触发特定的错误处理逻辑;而在“非空”状态下,则可以顺利执行入栈或出栈的操作。通过这种方式,开发人员能够更好地控制程序流程,并确保数据结构的一致性和完整性。 此外,利用LabVIEW提供的图形化编程环境和丰富的函数库资源可以帮助开发者更加直观地理解和实现堆栈及其状态机的概念。这不仅简化了复杂逻辑的处理过程,还提高了代码的可读性和维护性。