Advertisement

关于SAR图像中舰船目标识别的综述

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文为读者概述了合成孔径雷达(SAR)图像中的舰船目标识别技术进展,涵盖了多种方法及挑战,并展望未来研究方向。 SAR图像舰船目标识别是海洋监视应用中的关键技术之一。基于广泛的文献调研,本段落首先概述了SAR图像舰船目标识别的主要流程;然后对用于该领域的多种特征进行了分类整理,并分析了这些特征的物理意义及其优缺点;接着全面综述了应用于SAR图像舰船目标分类的各种算法;最后,文章还指出了当前研究中存在的主要问题并展望了未来的研究方向。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SAR
    优质
    本文为读者概述了合成孔径雷达(SAR)图像中的舰船目标识别技术进展,涵盖了多种方法及挑战,并展望未来研究方向。 SAR图像舰船目标识别是海洋监视应用中的关键技术之一。基于广泛的文献调研,本段落首先概述了SAR图像舰船目标识别的主要流程;然后对用于该领域的多种特征进行了分类整理,并分析了这些特征的物理意义及其优缺点;接着全面综述了应用于SAR图像舰船目标分类的各种算法;最后,文章还指出了当前研究中存在的主要问题并展望了未来的研究方向。
  • 深度学习在SAR检测
    优质
    本文是对深度学习技术应用于合成孔径雷达(SAR)图像中的舰船目标检测的研究进行的一次全面回顾。文章总结了近年来该领域的进展,包括不同模型架构、数据处理方法和评估指标,并指出了未来研究的方向。 近年来,合成孔径雷达成像技术由于具备全天候、全天时的目标感测能力,在海洋实时监测与管控等领域发挥着重要作用。特别是在高分辨率SAR图像中的舰船目标检测方面,已成为当前的研究热点之一。本段落首先分析了基于深度学习的SAR图像舰船目标检测流程,并对样本训练数据集构建、目标特征提取和目标框选设计等关键步骤进行了归纳总结。接着对比分析了各部分在提高SAR图像中舰船目标检测精度与速度方面的效果。最后,根据当前研究现状,深入探讨了深度学习算法应用于舰船检测中存在的问题,并提出了基于深度学习的SAR图像舰船目标检测未来的研究方向。
  • 级联CNNSAR检测方法
    优质
    本研究提出了一种基于级联卷积神经网络(CNN)的方法,专门用于合成孔径雷达(SAR)图像中的舰船目标检测。通过优化CNN模型结构,该方法显著提高了复杂背景下的舰船识别精度与效率。 针对合成孔径雷达(SAR)图像中舰船目标稀疏的特点,提出了一种基于级联卷积神经网络(CNN)的SAR图像舰船目标检测方法。该方法结合了候选区域提取技术BING与Fast R-CNN的目标检测框架,并采用级联CNN设计,以同时提高舰船检测的速度和准确率。 首先,在解决相干斑噪声对梯度算子的影响问题上,通过在原有基础上增加平滑算子来改进SAR图像中的边缘检测。此外,还优化了候选区域的数量与尺寸设置,使得提取的窗口更加精确且快速定位目标位置。 接下来设计了一种级联结构的Fast R-CNN框架:前端使用简单的CNN模型排除掉明显的非舰船背景;而后端则利用更复杂的网络对剩余高概率的目标进行细致分类和精确定位。这种多阶段处理策略保证了稀疏舰船检测任务中的高效性和准确性。 最后,提出了一种联合优化方法来解决多个目标函数的共同训练问题,加快模型收敛速度并提升性能表现。 实验结果表明,在SSDD数据集上应用该技术后,与原始Fast R-CNN和Faster R-CNN相比,新方法能够将检测精度从65.2%和70.1%分别提高到73.5%,并且每幅图像的处理时间也显著缩短至仅需113ms。
  • 两级CFARSAR快速检测算法
    优质
    本研究提出了一种基于两级恒虚警率(CFAR)的合成孔径雷达(SAR)图像舰船目标快速检测算法,旨在提升海上移动目标识别效率。 本段落基于对海杂波统计特性的分析,提出了一种使用两级CFAR的SAR图像舰船目标快速检测算法。
  • 深度卷积神经网络SAR检测.pdf
    优质
    本文探讨了利用深度卷积神经网络技术对合成孔径雷达(SAR)图像中的舰船目标进行高效准确检测的方法,并分析其应用前景。 本段落档探讨了基于深度卷积神经网络的SAR(合成孔径雷达)舰船目标检测技术。通过利用先进的图像处理方法,该研究旨在提高在复杂海洋环境中自动识别和分类海上船只的能力。文中详细分析了几种不同的模型架构,并评估它们在各种条件下的性能表现,为未来的研究提供了有价值的见解和技术基础。
  • SAR自动
    优质
    本研究探索利用合成孔径雷达(SAR)技术进行自动化目标识别的方法和技术,旨在提升军事侦察与民用监测领域的效率和准确性。 基于MSTAR数据库的目标自动识别项目包含完整的程序代码及实验报告。
  • 声呐水下检测、及跟踪研究
    优质
    本文综述了声呐图像中的水下目标检测、识别和跟踪技术的最新进展,涵盖了算法创新与应用挑战。 水下目标的检测、识别与跟踪在军事及民用领域具有重要的应用价值,并且是当前研究中的一个热点问题。本段落全面总结了基于声呐图像进行水下目标处理的研究进展,涵盖了原理、方法以及典型算法等方面的内容。 首先,文章详细介绍了有关于利用声呐图象实现水下物体检测的技术进步和主要的算法,包括去噪与分割技术的发展及其在实际操作中的应用扩展。其次,在特征提取及分类这一环节中,作者探讨了针对复杂海洋环境下的目标识别所面临的挑战,并讨论了一些关键性的技术和方法。 最后一部分则侧重于基于声呐信号处理以及图像信息的目标跟踪策略和算法的介绍。通过深入分析整个水下物体处理流程中的各个环节,本段落指出了当前技术中存在的主要科学难题及可能的研究方向,并对未来该领域的发展趋势进行了展望。
  • SAR遥感影数据集
    优质
    本数据集包含大量SAR遥感影像中舰船图像,旨在支持船舶自动识别研究,促进海洋监测与管理领域的技术进步。 数据集已经按照6:2:2的比例随机划分好,并且分别采用了YOLO格式和XML格式。
  • 探究
    优质
    本研究聚焦于图像中物体自动识别技术的研究与应用,探讨当前主流算法及模型,并探索提高识别精度的新方法。 在图像处理领域,基于目标识别的研究是一项至关重要的任务,它涉及到计算机视觉、模式识别以及机器学习等多个领域的知识。这项技术广泛应用于自动驾驶、无人机导航、安防监控及医疗影像分析等场景。 本项目主要关注通过自动阈值方法实现图片的二值化,并提取出26个特定标志点并给出它们的坐标。二值化是图像处理的基本步骤,将图像转换为黑白两色调,简化了后续特征提取和分析过程。常见的自动阈值算法包括Otsu、Isodata及Yen等方法,这些技术根据灰度直方图确定全局或局部的最佳分割阈值。 在本项目中,“背景黑,26个标志点白色”意味着二值化后的图像中将有26个特定的特征点标记为白色,其余部分则为黑色。这有助于进一步分析和识别关键信息,并可用于模板匹配、形状描述符提取及深度学习模型中的关键点检测。 我们使用MATLAB进行实现,该软件提供了丰富的图像处理函数,如imread用于读取原始图像,imbinarize用于二值化操作,bwlabel标记连通组件,regionprops获取特征属性(例如坐标信息)等。具体步骤包括: 1. 通过imread加载原始图片。 2. 使用自动阈值方法将图像转换为黑白两色。 3. 利用bwlabel找到所有白色区域即标志点。 4. 应用regionprops提取每个标志点的中心坐标。 5. 将结果保存至文本段落件或直接在MATLAB环境中显示。 通过深入研究和理解,该项目不仅有助于提升图像处理技能,也为其他复杂的计算机视觉任务打下坚实基础。