Advertisement

ICML 2020中关于【因果推理】的论文(六篇)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
这段简介可以聚焦于介绍这六篇关于因果推理的论文在2020年国际机器学习大会(ICML)上的亮点与贡献。以下是依据您提供的标题生成的50字左右的简介: 本文综述了ICML 2020会议中有关因果推理领域的六篇精选论文,涵盖了从理论探讨到应用实践等多个方面,推动该领域研究向前迈进。 在ICML 2020会议上,我们注意到有许多关于因果推理(Causal Inference)的论文被提交,并且相关理论方法已经在计算机视觉(CV)和自然语言处理(NLP)等领域开始得到应用。这些前沿的方法引起了广泛的关注。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ICML 2020
    优质
    这段简介可以聚焦于介绍这六篇关于因果推理的论文在2020年国际机器学习大会(ICML)上的亮点与贡献。以下是依据您提供的标题生成的50字左右的简介: 本文综述了ICML 2020会议中有关因果推理领域的六篇精选论文,涵盖了从理论探讨到应用实践等多个方面,推动该领域研究向前迈进。 在ICML 2020会议上,我们注意到有许多关于因果推理(Causal Inference)的论文被提交,并且相关理论方法已经在计算机视觉(CV)和自然语言处理(NLP)等领域开始得到应用。这些前沿的方法引起了广泛的关注。
  • ICLR 2021投稿精选(七
    优质
    这段简介可以描述为:“ICLR 2021会议中聚焦于因果推理领域的精选论文集锦。本文汇编了其中七篇最具影响力和创新性的研究文章,涵盖了一系列新颖的方法和技术,推动了对复杂数据间因果关系的理解。” ICLR 采用公开评审机制,使得这些论文可以提前被审阅者看到。本段落发现基于因果推理(Causal Inference)的投稿数量显著增加,相关理论方法在计算机视觉(CV)、自然语言处理(NLP)等领域也开始得到应用。这一前沿的方法受到了广泛关注。
  • 优质
    因果关系推理是指通过分析事件之间的因果联系,以推断或解释现象发生的原因和可能的结果的一种逻辑思维过程。 因果推理是统计学与机器学习领域的核心概念之一,它致力于理解和预测特定干预措施对结果的影响。在现实生活中,我们经常需要评估某个行动或决策(原因)如何影响一个事件或现象(效应)。R语言作为一种强大的统计分析工具,提供了多种库和方法来执行因果推断。 进行因果推理时的关键步骤包括: 1. **因果图**:使用有向无环图(DAG)等图形表示变量之间的关系。这些图表帮助识别潜在的混淆因素,并指导研究者设计合适的模型以减少偏见。 2. **因果假设**:在执行因果推断之前,需要做出一些关键性的假设,如交换性、没有未测量到的混杂因子以及无反事实干扰等。这些前提条件确保了我们能够准确地建立原因与结果之间的关系。 3. **倾向得分(Propensity Score)**: 倾向得分代表个体接受特定处理的概率,并且是基于所有可观测变量计算得出的值。通过匹配、分层或回归校正方式应用倾向得分,可以减少选择偏差,使得实验组和对照组在其他特征上更加可比。 4. **逆概率加权(Inverse Probability Weighting, IPW)**: 该方法利用个体接受处理的概率对数据进行加权调整,以补偿治疗分配的不平衡性,并估计因果效应。 5. **双重稳健估计**:结合倾向得分和结果变量模型的方法,在即使倾向得分建模不完全正确的情况下也能提供可靠的因果效果评估。 6. **工具变量分析(Instrumental Variables Analysis)**: 当直接因果路径受到混杂因素影响时,可以寻找一个只通过处理作用于结果的外部工具来估计真正的因果效应。 在R语言中存在许多支持进行因果推理操作的库和包。例如`causalImpact`用于评估干预措施的效果;`ggdag`, `MatchIt`, 和 `optmatch`分别用于绘制、匹配倾向得分及优化配对过程;而像`ipw`, `weightit`, 以及 `estimatr``cobalt`这样的工具则提供了逆概率加权与因果效应估计方法的评估和比较。 此外,还有其他几种常用的方法包括: 7. **分层倾向评分**:将数据划分为多个层次,在每个层次内处理组和对照组具有相似的倾向得分。这种方法可以提高对不同群体间差异的理解,并优化分析效率。 8. **门限回归(Threshold Regression)**: 适用于非连续或多值处理变量的情况,通过考虑各种不同的处理水平对于结果的影响来估计因果效应。 9. **结构方程模型**:利用`lavaan`库可以构建和评估包含潜在与显性变量间关系的复杂因果系统。 综上所述,R语言为研究者提供了丰富的资源来进行严谨细致地因果推理分析,并帮助他们得出更加可靠的研究结论。然而值得注意的是,在实际操作中必须谨慎解读这些结果并结合领域内的专业知识进行判断,因为任何因果推断都是基于一系列假设和统计技术的近似估计。
  • 讲解PPT——作者:Jakob Runge
    优质
    本PPT由Jakob Runge创作,旨在解析其关于因果推断的研究成果,通过数据和案例深入浅出地解释复杂理论,为学术界提供新的见解与方法。 论文名称:Detecting and quantifying causal associations in large nonlinear time series datasets 作者:Jakob Runge 主要内容: 本段落提出了PCMCI算法,这是一种用于因果推断的算法,能够有效处理高维度、强子相关性以及非线性的数据集。
  • Conditional-ECPE: 情绪与原之间条件2020 EMNLP回顾
    优质
    本文为2020年EMNLP会议上的研究回顾,探讨了《Conditional-ECPE》论文提出的关于文本内情感与其引发原因间复杂条件因果关系分析的方法和发现。 这是我们在2020年EMNLP论文“文本中的情绪和原因之间的条件因果关系” 中的存储库,包含手动标记的数据集和我们提出的模块代码。 请注意,我们的数据集是基于现有ECPE语料库构建的。如果您对原始ECPE数据集感兴趣,请直接查找相关资源或文献资料以获取更多信息。 如果使用了我们的数据集或代码,请引用以下论文: 陈新宏,李青,王建平。 文本中情绪与原因之间的条件因果关系。 在2020年自然语言处理经验方法会议(EMNLP)会议录中,第3111-3121页。 硬件环境 Windows 10 配备一个GPU:Nvidia Geforce RTX 2080 Ti 依赖要求: Python版本为3.6。 Tensorflow版本为1.14.0。 还需安装sklearn、numpy和scipy库。 数据集构建步骤: 运行“ preprocess.cy”以获取手动标记的数据集,该数据集将存储在名为data的文件夹中。
  • RDD:RDD
    优质
    本文探讨了在大数据背景下如何运用RDD(_regression discontinuity design_)方法进行有效的因果关系分析,特别针对RDD技术的应用细节和挑战进行了深入讨论。 RDD(Resilient Distributed Datasets)是Apache Spark框架中的核心概念之一,它是一种弹性分布式数据集。设计的主要目标是为了提供容错性、高效性和可编程性,从而使得大数据处理变得更加简单可靠。 RDD的基本思想在于将大文件分解成一系列不可变的数据分区,在集群的不同节点上进行存储。RDD具有两大关键特性:一是只读性——一旦创建后就不能修改;二是血统(Lineage),即通过其父RDD的操作历史来重建丢失或损坏的分区,这对于容错处理至关重要。 在Spark中引入了因果推断的概念,这是一种对数据处理过程的形式化描述方法。每个转换操作都会生成一个新的RDD而行动操作则会触发计算并可能产生结果输出。如果一个RDD依赖于另一个RDD,则可以认为前者的创建是后者产生的“因”,反之则是“果”。通过分析这些因果关系,我们可以追踪整个数据流,并更好地理解和调试复杂的数据处理流程。 汉森复制是一种在统计学和经济学中广泛使用的工具,用于验证经济模型的预测能力。在这种上下文中,使用RDD来复现实验或模拟研究可以实现大规模的数据模拟与预测分析。结合Spark并行计算的优势,这种方法能够显著提高效率。 实际应用时涉及的知识点包括: 1. 数据分区策略:如何合理地划分数据以优化存储和计算效率。 2. 转换与行动操作的理解及使用:掌握各种常见的转换(如map、filter、reduceByKey)和行动(如count、saveAsTextFile)的操作机制。 3. 容错机制:理解RDD的血统以及检查点(Checkpoint)机制,学习如何在出现故障时恢复数据。 4. 广播变量与累加器的作用及其优化性能的方法。 5. 性能调优策略包括配置Spark参数、数据本地性优化和任务调度等以提高整体计算效率。 6. 学习汉森检验的原理以及实现方法,了解如何在Spark中使用RDD来验证模型的有效性和统计性质。 通过深入理解以上知识点,开发者可以更有效地利用Spark RDD进行大数据处理,并结合因果推断与汉森复制的方法开展复杂的分析和建模工作。
  • 2020年7月知识图谱表示学习KGRL顶会(含代码)
    优质
    本简介推荐了2020年七月在顶级会议上发表的六篇有关知识图谱表示学习(KGRL)的重要论文,并附上相关代码,便于研究者深入探究。 自2020年7月以来,KDD、ICML、ACL 和 IJCAI 等会议相继公布了最新论文成果。本段落特别整理了其中的8篇关于知识图谱的研究文章,作者分别来自Amazon、卡内基梅隆大学(CMU)、斯坦福大学和Google等知名机构。这些研究成果值得大家学习和鉴赏。
  • 系-模型、
    优质
    本书探讨了因果关系在统计学和机器学习中的核心地位,涵盖了因果模型构建、推理方法以及如何从观察数据中进行有效推断等内容。 《因果论:推理与推断》是由Judea Pearl撰写的一本书,其ISBN编号为0521773628,在亚马逊网站上可以找到该书的相关信息。
  • 多维网络方向方法
    优质
    本文探讨了在复杂多维网络环境下如何有效推断变量间的因果关系与方向性,提出了一种新颖的推理算法。该方法通过分析数据结构和模式,增强了对高维度、大规模网络数据集中潜在因果链的理解能力,为解决实际问题提供了强有力的工具。 本研究提出了一种基于拆分与合并策略的新方法,用于从多维网络中推断因果方向,解决的是科学领域中的一个基本问题——如何从观测变量中推断因果关系。 首先介绍多维网络的概念及其应用:多维网络是由多个维度构成的复杂结构,通常用来表示和分析实体之间的相互作用。这些节点可能代表个体、基因或者蛋白质等不同类型的实体,而边则反映它们之间的作用或联系。每个维度可以代表不同的属性如时间、空间或者功能特性。这种复杂的网络模型在生物学、社会学以及信息技术等领域有着广泛的应用。 接下来是因果推断问题的介绍:因果推断旨在确定一个事件(原因)是否对另一个事件(结果)产生影响的过程,这在科学研究、数据分析和机器学习中至关重要。传统方法如实验设计或统计回归分析可能需要大量的数据及预设假设,而新兴算法则尝试利用网络结构来识别潜在的因果关系。 拆分与合并策略是复杂系统分析中的常用技术:研究者将多维网络分解为多个诱导子网络,每个子网对应于原网络的一个节点。这种拆解有助于简化问题并使处理规模更小、结构简单的子网成为可能。然后可以分别对这些简化的子网进行因果推断,并最终合并结果以形成整个系统的因果图。 对于不同类型的子结构(单度、非三角和三角存在),研究者开发了专门的算法来识别潜在的因果关系,这是该研究的核心内容之一。虽然具体的技术细节未在文段中详细说明,但可以推测这些算法能够从网络拓扑结构中准确地推断出可能存在的因果关系。 为了验证新方法的有效性和通用性,研究人员进行了实验,并通过对比展示了其相对于现有方法的优越性。尽管文中没有提供详细的实验设计或数据支持的具体信息,但研究者似乎证明了该方法在各种类型的多维网络和不同规模的数据集上都能产生可靠的结果。 最后,在2017年IEEE国际计算科学与工程大会(CSE)以及IEEE国际嵌入与普适计算会议(EUC)等学术会议上发表的研究论文表明,这项工作得到了学界的认可,并对相关领域产生了影响。这些多学科交叉的平台汇聚了来自不同背景的专业人士共同探讨前沿成果和进展。 总之,本研究通过拆分与合并策略以及针对特定子结构设计的有效算法开发了一种新的方法来推断多维网络中的因果关系,展示了其在众多科学领域的广泛适用性。
  • ICML 2020列表与下载链接.zip
    优质
    本资源包包含ICML 2020所有会议论文及其下载链接,方便研究者快速获取最新机器学习研究成果。 ICML 2020 所有文章的下载链接现已提供,共计1086篇文章,点击链接可直接跳转到PDF页面并进行下载。