Advertisement

电路方案及实时温度测量源代码的设计与实现说明。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
当讨论温度测量时,人们通常会首先联想到使用模拟-数字转换器(AD)进行数据采样。然而,在某些对测量精度要求不那么严格的应用场景中,我们可以尝试采用不同的方法,避免使用AD,而是选择其他替代方案。下面不作过多详细说明,请参考下图所示的RC充放电实时温度测量电路连接图。设计说明:该方案中,CPU采用了常用的STC系列单片机之一。我们选取了三个GPIO管脚,分别用于连接热敏电阻、100K高精电阻R1以及泄流电阻R2。随后,通过一个电容器将其连接到地端GND。在此设计中,电容器可以被理解为一块小型电池,并且实际上它也是一个可充电的电池单元。 (更详细的设计说明请参阅附件)。以下是RC充放电实时温度测量源代码部分的截图:

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RC充放-
    优质
    本项目提供了一种用于测量RC电路在充放电过程中实时温度的解决方案,包括详细的源代码和设计文档。通过精确监测元件温度变化,优化了电子设备性能与安全。 当我们谈论温度测量时,通常会想到使用AD数据采样技术。然而,在某些对精度要求不高的场合下,我们可以通过其他方法来实现这一目标而不必依赖于AD转换器。 具体来说,可以采用RC充放电电路进行实时的温度测量。该电路的设计如下:选用STC系列单片机作为CPU,并使用其中三个GPIO管脚连接热敏电阻、100K高精度电阻R1和泄流电阻R2,然后通过一个电容器将其与GND相连。 在这个设计中,可以将电容器视为一个小电池,而且它还具有充电功能。这种电路利用了RC充放电的原理来实时测量温度变化,并且可以通过相应的代码实现这一过程。 对于具体的源码细节,请参考提供的截图或相关文档说明。
  • RC充放-
    优质
    本项目提供一种用于RC充放电过程中实时监测温度变化的解决方案,包括详细的电路设计方案和配套的源代码。通过精确监控电子元件在充放电过程中的温度状况,为改进电池管理系统及延长设备使用寿命提供了重要数据支持。 谈到温度测量,人们通常会想到使用AD数据采样技术。然而,在一些对精度要求不高的场景下,可以尝试不同的方法来实现这一功能,而无需采用AD转换器。 具体来说,可以通过RC充放电电路来进行实时的温度测量。在此设计中,所使用的CPU是STC系列单片机中的某一款型号。该方案利用了三个GPIO引脚分别连接热敏电阻、100K高精度电阻R1以及泄流电阻R2,并通过一个电容器与GND相连。 这里可以将电容器视作一个小电池且是一只可充电的类型,其充放电过程会随着温度变化而改变。基于此原理进行设计能够实现对环境温度的有效监测和测量功能。
  • 便携式ECG(含原理图、等)-
    优质
    本项目提供一种便携式ECG测量仪的设计方案,包含详细的工作原理图、完整源代码以及全面的设计说明书。此设备旨在为用户提供便捷的个人心电监测服务。 今天要介绍的是一个来自STM32开发社区的2008大赛参赛作品——便携式心电图测量仪ECG Primer,它基于32位ARM应用设计而成。该设备的基础是意法半导体(ST)推出的STM32 Primer,这是一款集学习与娱乐于一体的趣味性应用开发工具。 作为比赛的一部分,原理图和代码都需要公开提供。在这款便携式心电图测量仪中使用了关键的芯片:仪表放大器AD622AR、升压转换芯片TPS601070以及运算放大器TL064PW。以下是其系统设计框图及采集部分电路原理图: (此处省略具体附件内容截图) 请注意,这些信息涵盖了设备的核心组件和基本结构。
  • 超声波热系统(含硬件、
    优质
    本项目专注于开发超声波热量表测量系统,涵盖详细硬件配置与软件编程。详细介绍包括电路图、元器件清单以及关键源代码,并提供全面的设计理念和实现细节。 超声波热量表采用瑞萨公司的RL78/L12单片机完成设计,其总体结构包括硬件和软件两部分:首先,在硬件方面涉及超声波热量表、红外及M-BUS抄表系统的电路实现;其次,软件部分则涵盖了控制系统的设计以及与上位机通信的程序编写。此外还特别注意了低功耗设计和抗干扰性能。 该系统的主要功能包括测量供热系统中的流量、温度和热量,并通过LCD显示这些数据信息。当电源停止供电时,所有采集到的数据会被保存下来,在恢复供电后能够继续正常计量;同时支持与上位机的通信,可以接收或发送所需的信息给上位机。 设计框图详细展示了超声波热量表的工作原理及各模块间的连接关系。电路原理图则具体说明了测量过程中涉及到的关键电子元件和线路布局情况。源代码截图提供了软件程序的设计细节,便于进一步研究开发工作。
  • 湿传感器模块(含HS1101LF、TC1047A硬件、)-
    优质
    本项目提供一款集成HS1101LF和TC1047A芯片的温湿度传感器模块设计方案,包含详细硬件配置与源代码。附有完整的设计文档以供参考学习。 电路城分享的温湿度传感器模块采用瑞萨电子生产的 R7F0C802 单片机作为控制单元,采集温度传感器 TC1047A 输出的电压信号以及湿度传感器 HS1101LF 产生的频率信号,并通过计算处理后由异步串行通信接口输出易于理解的温湿度值。该模块的工作电源为4.5V至5.5V直流电,低功耗电流(MCU)在5MHz时典型值为290µA,响应时间小于1秒。 温度测量范围是-40℃到85℃,精度达±1℃;湿度测量范围从1%RH到99%RH,精确度可达0.1%RH。采用瑞萨单片机R7F0C802作为MCU,HS1101LF为湿度传感器,并使用TC1047A进行温度检测。模块通过UART与控制器通信发送当前的温湿度数据。 具体而言,该模块利用定时器阵列单元测量由HS1101LF产生的频率信号以采集实时湿度值;同时采用ADC转换器读取来自TC1047A传感器输出的电压信息来获取温度数值。
  • 子竞赛)基于CT107D监控系统-
    优质
    本项目提供了一套基于CT107D微控制器的温度监测系统的完整代码和设计方案,包括硬件电路图、软件实现逻辑等资料,旨在帮助用户有效监控环境温度。 温度监控器能够实现环境温度的检测及报警功能;通过EEPROM存储上下限温度数值,并可通过外部按键更改这些值。系统硬件电路主要包括单片机控制电路、数码管显示电路、EEPROM存储电路、直流电机驱动电路(设计部分)、键控电路以及继电器组成。该设计基于CT107D开发板平台完成。 温度监控器源码可以直接下载到CT107D开发板上运行,具体细节请参考附件中的环境监控系统源代码内容和相关说明文档。
  • 基于AD7793系统PCB文件-
    优质
    本项目介绍了一种基于AD7793高精度模数转换器的温度测量系统电路设计方案,并提供完整的PCB源文件,适用于精密测温应用。 该项目是一个未能按时完成的高精度温度测量系统设计。整个项目包括PCB板和硬件电路已经全部完成。该高精度温度测量电路使用的重要芯片包括MSP430F4152、AD7793、EDS820、PTR6000M等,并附有相关的温度测量电路及PCB截图。
  • 优质
    本说明书详细介绍了热电偶温度测量仪的设计方案、工作原理及应用范围。通过优化电路设计和算法处理,提高测量精度与响应速度,适用于工业自动化领域中的高温监测需求。 热电偶冷端补偿与89C51单片机及ADC0809模数转换器的线性化标度变换。
  • 自行车里程表(含原理图、PCB文件、)-
    优质
    本项目详细介绍了一款自行车里程表的设计与实现过程,包括其工作原理、硬件电路设计(原理图和PCB布局)、软件代码以及详细的设计文档。 随着自行车运动的普及和发展,越来越多的人开始选择骑自行车作为健身方式。为了更好地监测骑行情况和评估自己的运动量,自行车码表成为了一款不可或缺的设备。它能够准确地计算速度与行驶距离,并通过这些数据帮助骑行者达到最佳健康效果。 本段落介绍了一个基于瑞萨低功耗单片机R7F0C002 的自行车码表示例解决方案。以下是该方案的技术参数和规格: 技术参数: - 电源:3.0 V(锂电池 CR2032 ×1) - 待机电流(MCU):在STOP模式下为 0.23uA - LCD 工作电压:3.0V - 显示驱动方式及升压生成方法:内部升压,基准电压设为1.00 V 功能规格: - 节能特性:当无运动信号输入超过300秒时,系统进入低功耗(STOP)模式。 - 时间显示:实时在LCD面板上展示当前时间(小时、分钟等) - 总行车时间记录:持续更新并显示总骑行时间 - 当前速度指示:即时反映当前行驶的速度(公里/小时) - 单次行程距离统计:每趟旅程的行进里程数将被计算和呈现 - 累积行驶距离跟踪:累计所有行程的距离,并在显示屏上展示 - 时间设置功能:允许用户通过按键设定时间信息 - 车轮周长调节选项:提供调整车轮周长(毫米)的功能以适应不同尺寸的自行车轮胎 环境要求: - 工作温度范围:-10℃ 至 40℃ - 湿度条件:30% RH 到95% RH
  • 位移系统(含原理图、PCB文件、文档)
    优质
    本项目提供了一种高效的位移测量系统电路设计,包括详细的原理图、PCB源文件以及配套的源代码和说明文档,为工程师和研究人员提供了全面的技术支持。 位移测量系统概述:该系统主要用于实验台的水平移动距离测量。通过STC15W4K32S4单片机控制步进电机驱动器来转动步进电机,并带动实验台在导轨上的平移运动。利用电阻式位移传感器实时检测并获取位移值,然后使用AD7705模数转换芯片将这些数据传送到STC单片机中,最后通过LCD1602或串口屏显示测量的位移以及其他参数信息。 本系统的核心控制部件为STC15W4K32S4单片机,并且其所有引脚均已连接。此控制器不仅能实现电机驱动和位移值的实时显示功能,还能作为51系列微处理器的学习开发板使用。该测量系统经过调试验证后可以直接投入使用。 结构框图及电路原理图:提供了本系统的整体框架图以及详细的电路设计图纸(包括PCB源文件),可以通过AD软件打开查看;同时还有完整的位移测量系统代码和详细的设计说明文档供参考。