Advertisement

拔河比赛中的动态规划问题

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了在拔河比赛中运用动态规划解决策略优化的问题,通过建模分析参赛队伍的力量分配与战术调整,旨在提升比赛胜率。 题目描述:小明所在的班级即将举行一次拔河比赛。班主任计划将所有学生分成两队参赛,并确保每个人都要参加。同时,为了保证公平性,两队的人数之差不能超过1人;并且希望两个队伍的总体重尽可能接近,最好能够完全相同。 输入说明: - 输入数据包含多组测试案例。 - 每个测试案例的第一行会给出一个正整数n(2 ≤ n ≤ 100),表示班级中共有n名学生参加比赛。 - 接下来的n行中,每行将提供一个整数值w(1 ≤ w ≤ 450),代表每个学生的体重。 输出说明: 对于每一组输入数据,请分别计算并输出两个队伍各自的总重量。请按照升序排列显示两队的总重量。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了在拔河比赛中运用动态规划解决策略优化的问题,通过建模分析参赛队伍的力量分配与战术调整,旨在提升比赛胜率。 题目描述:小明所在的班级即将举行一次拔河比赛。班主任计划将所有学生分成两队参赛,并确保每个人都要参加。同时,为了保证公平性,两队的人数之差不能超过1人;并且希望两个队伍的总体重尽可能接近,最好能够完全相同。 输入说明: - 输入数据包含多组测试案例。 - 每个测试案例的第一行会给出一个正整数n(2 ≤ n ≤ 100),表示班级中共有n名学生参加比赛。 - 接下来的n行中,每行将提供一个整数值w(1 ≤ w ≤ 450),代表每个学生的体重。 输出说明: 对于每一组输入数据,请分别计算并输出两个队伍各自的总重量。请按照升序排列显示两队的总重量。
  • VHDL代码_Zip文件_VHDL_vhdl__电子电路
    优质
    该资源为一个包含VHDL代码的压缩文件,用于实现电子拔河游戏的电路设计。通过编写的VHDL程序模拟拔河比赛的情景,适用于数字系统课程实验或项目开发。 实现简单的电子拔河比赛:通过两个按键进行模拟操作,利用计数器进行计数,并使用比较器进行比较,最后用LED灯直观显示结果。
  • LINGOmaxmin
    优质
    本简介探讨在LINGO软件环境下解决包含最大最小化目标的动态规划问题的方法和技巧,旨在优化决策过程中的风险管理和收益最大化。 可以使用该程序解决maxmin问题,在运行时需要将代码中的路径改为自己的文档路径。此程序可用于求解非线性规划问题;如果仅需求解最大值或最小值,可去掉“>=c”这一条件,并直接用max或min。
  • C++总结
    优质
    本文档总结了在C++编程中解决动态规划问题的关键技巧和常用方法,涵盖从基础概念到复杂应用案例的全面解析。 ### C++ 动态规划问题汇总 #### 一、引言 动态规划(Dynamic Programming,简称 DP)是一种解决多阶段决策过程最优化问题的方法。它适用于具有重叠子问题和最优子结构特性的问题。本篇文章主要针对一些经典的动态规划题目进行归纳总结,并给出了解决方案和思路。 #### 二、动态规划基础知识回顾 在深入分析题目之前,先简要回顾一下动态规划的基本概念: - **状态定义**:确定动态规划问题中的状态变量。 - **状态转移方程**:定义如何从一个状态转移到另一个状态。 - **边界条件**:定义初始状态或特殊情况下的值。 - **方向求解**:通常有自底向上(迭代)和自顶向下(递归 + 记忆化)两种方式。 #### 三、具体题目解析 ##### 1. 爬楼梯的最少成本 **题目描述**:给定一个非负整数数组 `cost`,其中 `cost[i]` 表示第 `i` 个阶梯的体力花费值。目标是从起点到达顶层的最小花费。可以选择从第 0 或第 1 个阶梯开始。 **解题思路**: - **状态定义**:`dp[i]` 表示到达第 `i` 个阶梯所需的最小花费。 - **状态转移方程**:`dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])`。 - **边界条件**:`dp[0] = cost[0]`, `dp[1] = cost[1]`。 - **最终结果**:返回 `min(dp[n-1], dp[n-2])`。 **代码实现**: ```cpp class Solution { public: int minCostClimbingStairs(vector& cost) { vector dp(cost.size() + 1); dp[0] = cost[0]; dp[1] = cost[1]; for (int i = 2; i < cost.size() + 1; i++) { dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]); } return min(dp[cost.size()], dp[cost.size() - 1]); } }; ``` --- ##### 2. 粉刷房子 **题目描述**:给定一个 `n x 3` 的二维数组 `costs`,其中 `costs[i][j]` 表示粉刷第 `i` 个房子为颜色 `j` 的花费。目标是最小化粉刷所有房子的总成本,且相邻房子颜色不同。 **解题思路**: - **状态定义**:`dp[i][j]` 表示粉刷到第 `i` 个房子并将其涂成颜色 `j` 的最小成本。 - **状态转移方程**:`dp[i][j] = costs[i][j] + min(dp[i-1][k])` 其中 `k ≠ j`。 - **边界条件**:`dp[0]` 直接等于 `costs[0]`。 - **最终结果**:返回 `min(dp[n-1][0], dp[n-1][1], dp[n-1][2])`。 **代码实现**: ```cpp class Solution { public: int minCost(vector>& costs) { int m = costs.size(); int n = m == 0 ? 0 : costs[0].size(); vector> dp(m, vector(n)); dp[0] = costs[0]; for (int i = 1; i < m; i++) { for (int j = 0; j < n; j++) { int tempMin = INT_MAX; for (int k = 0; k < n; k++) { if (k != j) { tempMin = min(tempMin, dp[i - 1][k]); } } dp[i][j] = costs[i][j] + tempMin; } } return *min_element(dp.back().begin(), dp.back().end()); } }; ``` --- ##### 3. 翻转字符 **题目描述**:给定一个由 `0` 和 `1` 组成的字符串 `s`,目标是通过最少次数的翻转操作使得字符串变成“单调递增”的形式,即所有的 `0` 在 `1` 的前面。 **解题思路**: - **状态定义**:`dp[i][0]` 表示前 `i` 个字符翻转 `0` 成 `1` 的最小翻转次数;`dp[i][1]` 表示前 `i`
  • C语言经典
    优质
    本文章深入探讨了C语言中经典的动态规划问题,通过实例解析和代码演示,帮助读者理解如何在编程实践中应用动态规划算法。 关于最长递增公共子序列、最长公共子串以及最小编辑代价这些经典的动态规划问题的详细代码实现可以进行深入探讨。这些问题在算法学习中非常重要,并且广泛应用于各种实际场景,如文本比较、基因测序等领域。通过编写和分析这些问题的解决方案,可以帮助我们更好地理解动态规划的核心思想及其应用技巧。
  • 基于EDA技术设计
    优质
    本项目运用电子设计自动化(EDA)技术,创新性地开发了一套智能化拔河比赛系统,旨在提升赛事公平性和观赏性。 该控制系统由输入模块、输出模块和控制器模块构成。输入模块负责接收裁判启动命令以及两个按钮信号的输入,并通过门电路实现相应的逻辑关系;控制器模块则完成对这些脉冲信号进行统计的任务,具体而言是由一个可预置加/减计数器来执行这一功能,其初始值设定为0100作为计数起点。此外,该计数器接收来自两个按钮的脉冲信号以实现加法或减法操作,并将输出的状态变量传送到输出模块;而输出模块则负责对统计结果进行翻译和显示(可以使用发光二极管来完成),同时还会发出一个表示比赛结束的信号。
  • 01背包.docx
    优质
    简介:本文档深入探讨了经典的01背包问题,并通过详细的案例分析和代码实现介绍了如何运用动态规划方法解决该问题。 ### 01背包问题动态规划解析 #### 一、问题背景与定义 01背包问题是一种典型的组合优化问题,属于动态规划的经典应用场景之一。该问题的基本形式为:假设有一个背包,其最大承载重量为\( W \),同时有一系列物品(编号为1到n),每个物品都有对应的重量\( w_i \)和价值\( v_i \)。目标是在不超过背包最大承载重量的前提下,选择部分或全部物品装入背包,使得所选物品的价值总和最大化。 #### 二、动态规划思路 为了有效地解决01背包问题,通常采用动态规划方法。具体步骤如下: 1. **状态定义**: 定义二维数组\( dp[i][j] \)表示考虑前 \( i \)个物品时,背包容量为 \( j \)时能达到的最大价值。 2. **状态转移方程**: 对于任意一个物品 \( i \),有两种选择: - 不选择该物品,则 \( dp[i][j] = dp[i-1][j] \); - 选择该物品,则 \( dp[i][j] = dp[i-1][j-w_i] + v_i \),前提是 \( j \geq w_i \)。 因此状态转移方程可以总结为: $$ dp[i][j] = max(dp[i-1][j], dp[i-1][j-w_i] + v_i), \text{if } j \geq w_i $$ 3. **边界条件**: - 当没有物品可选时,即 \( i=0 \)时,无论背包容量是多少,价值都是0,即 \( dp[0][j] = 0 \)。 - 当背包容量为0时,即 \( j=0 \)时,无论有多少物品可选,价值也是0,即 \( dp[i][0] = 0 \)。 4. **最终答案**: 最终的答案就是 \( dp[n][W] \),即考虑所有物品时背包容量为 \( W \)时能达到的最大价值。 #### 三、C++实现 以下是根据上述思路实现的01背包问题动态规划算法的C++代码示例: ```cpp #include #include #include using namespace std; // 动态规划求解01背包问题 int knapsack(int W, vector& weights, vector& values, int n) { // 创建一个二维数组dp,其中dp[i][w]表示前i个物品放入容量为w的背包中所能获得的最大价值 vector> dp(n + 1, vector(W + 1, 0)); // 动态规划求解 for (int i = 1; i <= n; ++i) { for (int w = 1; w <= W; ++w) { // 如果第i个物品的重量大于当前背包容量w,则无法放入,最大价值不变 if (weights[i - 1] > w) { dp[i][w] = dp[i - 1][w]; } else { // 否则,可以选择放入或不放入第 i 个物品,取两种情况的最大值 dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]]); } } } // 返回前 n 个物品放入容量为 W 的背包中所能获得的最大价值 return dp[n][W]; } int main() { int n; // 物品数量 cout << 请输入物品数量: ; cin >> n; vector weights(n); // 物品重量 vector values(n); // 物品价值 cout << 请输入每个物品的重量和价值:\n ; for (int i = 0; i < n; ++i) { cin >> weights[i] >> values[i]; } int W; // 背包容量 cout << 请输入背包的容量: ; cin >> W; // 求解并输出结果 int max_value = knapsack(W, weights, values, n); cout << 背包能装入的最大价值为:\n << max_value << endl; return 0; } ``` #### 四、分析与讨论 1. **时间复杂度**: 该算法的时间复杂度为\( O(nW) \),其中 \( n \)是物品的数量,\( W \)是背包的最大容量。 2. **空间复杂度**:同样地,由于采用了
  • 】电路布局
    优质
    简介:本项目探讨了利用动态规划算法解决电路布局优化的问题,旨在寻找最短连线路径或最小成本配置,提高电路板设计效率和性能。 问题描述:在一块电路板的上、下两端分别有n个接线柱。根据电路设计要求,用导线(i, π(i)) 将上端接线柱i与下端接线柱π(i)相连,其中π(i), 1 ≤ i ≤ n 是{1,2,…,n}的一个排列。每条导线(I, π(i)) 称为该电路板上的第i条连线。对于任何1 ≤ i ≤ j ≤ n,第i条连线和第j条连线相交的充要条件是π(i) > π(j)。给定一个具体的例子:π(i)={8,7,4,2,5,1,9,3,10,6}。 在制作电路板时需要将这n条连线分布到若干绝缘层上,在同一层上的连线不相交。电路布线问题要求确定哪些连线安排在第一层上以使得该层上有尽可能多的连线。换句话说,这个问题是寻找导线集Nets = {i, π(i), 1 ≤ i ≤ n} 的最大不相交子集。 最优子结构性质:记 N(i,j) = {t|(t,π(t)) ∈ Nets,t ≤ i, π(t) ≤ j}. N(i,j)的最大不相交子集为MNS(i,j),Size(i,j)=|MNS(i,j)|。即: 1. 当i=1时, 2. 当i>1时,分两种情况: ① 若j <π(i),此时 (i, π(i)) 不属于N(i, j)。 该问题的核心在于确定导线集的最大不相交子集以减少连线之间的交叉。