Advertisement

基于气象因素深度挖掘的BiLSTM光伏发电短期功率预测

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用BiLSTM模型,结合多种气象因素,深入分析并优化短期光伏发电功率预测技术,提升预测准确性。 传统光伏发电功率预测面临的问题在于气象因素特征提取不够综合与精确,导致预测精度不高。为了更全面地挖掘气象条件对光伏输出的影响,并有效利用深度学习技术在非线性拟合方面的优势,本段落提出了一种基于充分考虑气象因素影响的双向长短期记忆(BiLSTM)网络模型来实现光伏发电短时间内的功率预测。 此方法首先对原始数据进行异常值和标准化处理。然后采用K近邻算法(KNN)从外界温度、湿度、压强等多种气象变量中筛选出关键的影响因子,重构相关多元数据序列。在确定输入层的时间步长、网络层数及各层的维数等超参数的最佳配置方案之后,构建了BiLSTM模型。实验结果表明,与KNN、深度信念网络(DBN)、BiLSTM和PCA-LSTM等经典方法相比,本段落提出的基于KNN-BiLSTM的方法在光伏发电短期功率预测精度上具有明显优势。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BiLSTM
    优质
    本研究利用BiLSTM模型,结合多种气象因素,深入分析并优化短期光伏发电功率预测技术,提升预测准确性。 传统光伏发电功率预测面临的问题在于气象因素特征提取不够综合与精确,导致预测精度不高。为了更全面地挖掘气象条件对光伏输出的影响,并有效利用深度学习技术在非线性拟合方面的优势,本段落提出了一种基于充分考虑气象因素影响的双向长短期记忆(BiLSTM)网络模型来实现光伏发电短时间内的功率预测。 此方法首先对原始数据进行异常值和标准化处理。然后采用K近邻算法(KNN)从外界温度、湿度、压强等多种气象变量中筛选出关键的影响因子,重构相关多元数据序列。在确定输入层的时间步长、网络层数及各层的维数等超参数的最佳配置方案之后,构建了BiLSTM模型。实验结果表明,与KNN、深度信念网络(DBN)、BiLSTM和PCA-LSTM等经典方法相比,本段落提出的基于KNN-BiLSTM的方法在光伏发电短期功率预测精度上具有明显优势。
  • K-means-SVM.pdf
    优质
    本文提出了一种结合K-means聚类与SVM(支持向量机)的方法,用于提高短期光伏发电功率预测的准确性。通过先用K-means算法对数据进行预处理和分类,再使用改进后的SVM模型进行功率预测,有效提升了预测精度和可靠性,为光伏发电系统的优化运行提供了有力的数据支撑。 本段落提出了一种基于Kmeans算法和支持向量机(SVM)的短期光伏发电功率预测方法。该方法通过对短期光伏发电特性和季节特性进行分析,组织训练样本集,并利用Kmeans算法对这些数据进行聚类处理,在每个类别上分别建立支持向量机模型。在实际预测过程中,根据待测样本所属分类使用相应的支持向量机模型来估计发电功率。 光伏电力生产受到太阳辐射、环境温度和湿度以及空气流通条件等多种因素的影响,具有随机性、波动性和间歇性的特点,这使得其输出难以准确预测,并对电网的稳定运行构成挑战。因此,短期光伏发电功率预测对于保障电网的安全与稳定性及优化资源利用至关重要。通过提前预知光伏电力产出情况,可以更有效地调度和管理电网资源。 在该方法中,Kmeans算法被用来将训练数据划分为不同的类别;而支持向量机则用于每个类别的模型建立工作,以实现对光伏发电功率的有效预测。相较于传统的BP神经网络和支持向量机单独应用的方法,基于Kmeans-SVM的策略能够更精确地捕捉到光伏电力生产的随机性和波动性特征,从而提高整体预报精度。 这一创新性的短期发电输出预测技术不仅有助于电网调度和规划工作的优化执行,还能被广泛应用于光伏发电站内部的功率控制与调整中。通过这种方式可以进一步增强发电系统的稳定运行能力和可靠性保障水平。
  • 数据_PV.zip
    优质
    该数据集包含短期光伏功率预测的相关信息,适用于研究和分析光伏发电系统的性能与预测模型优化。文件内含历史气象及发电数据,有助于提升光伏电站运营效率。 超短期光伏功率预测(PV)是一种重要的技术手段,用于准确预测短时间内光伏发电系统的输出功率。这项工作对于优化电网调度、提高可再生能源的利用效率以及确保电力系统稳定运行具有重要意义。通过分析气象数据与历史发电数据之间的关系,可以建立有效的模型来实现对下一小时或更短时间内的光伏电站出力情况做出精确预估。
  • 方法研究探讨
    优质
    本文深入研究了影响光伏电站短期发电量的各种因素,并提出了一种新的预测模型和算法,以期提高光伏发电功率预测精度。 光伏电站短期发电功率预测方法的研究及新算法的仿真分析
  • BWO算法VMD-KELM模型在分析与应用
    优质
    本研究提出了一种结合BWO优化算法和VMD-KELM模型的方法,用于提高光伏电力系统的短期功率预测精度,并进行了深入的应用分析。 基于白鲸优化算法(BWO)的VMD-KELM模型在光伏发电短期功率预测中的深度解析与实现 本段落探讨了利用变分模态分解(VMD)技术对特征数据进行处理,将得到的子序列输入到后续的KELM模型中。通过应用白鲸优化算法来调整和支持向量核参数以及正则化系数的选择过程,从而提高预测精度。 - 利用VMD方法对原始光伏发电功率时间序列进行了有效的模态分解; - 结合BWO算法进行超参调优,在此基础上构建了改进的KELM模型; - 详细注释每一阶段的操作步骤与原理说明。
  • 站温、某及超和辐照数据
    优质
    本项目聚焦于某电站的实际运行情况,涵盖温度监测与光伏功率(含短期及超短期)预测,并分析关键因素——辐照度数据,以提升发电效率与稳定性。 在光伏电站的运行与管理过程中,数据发挥着至关重要的作用。文中提到的数据包括“某电站温度”、“某光伏短期及超短期功率预测”以及“某光伏辐照度”,这些都是评估光伏电站性能的重要指标,对于优化效率、提升发电量和进行准确的功率预测至关重要。 1. **电站温度**:光伏电池板的工作效率会受到环境温度的影响。当温度上升时,电池板的开路电压降低,进而影响其输出电力。因此,实时监测电站内的气温变化有助于调整运行策略,并通过温控系统保持电池的最佳工作状态。 2. **功率预测**:短期和超短期功率预测是光伏电站调度及参与电力市场交易的基础。其中,短期预测涵盖一天至一周的范围,主要用于电网规划;而超短期预测则为几分钟到几小时不等,用于实时平衡电力需求与供应。这些预测数据基于历史记录、气象信息以及光伏模型等因素进行分析和计算,在降低电网波动性及确保电力稳定方面发挥着重要作用。 3. **辐照度**:太阳辐射强度直接影响光伏发电系统的输出功率。通过监测并分析光伏辐照度,可以评估电站的发电潜力,并在设计阶段确定最佳倾斜角度与朝向以最大化太阳能吸收效率。 4. **概率函数建模**:利用光伏数据建立的概率分布模型有助于理解及量化天气变化对系统性能的影响。这些模型能够帮助人们更好地掌握不同气候条件下光伏系统的运行情况,从而提高预测准确性并减少不确定性因素。 5. **发电量预测**:结合电站温度、辐照度等信息可以构建出更精确的光伏发电量预测模型,这不仅有助于指导日常运营维护工作,还能为电网公司提供电力调度依据,并预防因光伏发电波动引发的不稳定问题。 6. **数据分析与应用**:上述数据可用于故障检测及诊断(例如异常高温可能指示设备过热或冷却系统失效),同时通过对历史记录进行深入分析可以识别出电站性能随季节变化的趋势,以便制定更有效的维护计划。 7. **智能能源管理系统**:将实时和历史数据整合至智能能源管理系统中,通过算法优化光伏站的运行参数(如动态调节逆变器的工作条件)以提高整体能效。这些关键指标对于确保光伏电力的安全、可靠及经济效益具有重要意义。 综上所述,通过对电站温度、功率预测模型以及辐照度等核心数据的有效利用与深入理解,可以进一步推动整个光伏行业的进步和发展,并提升清洁能源的使用效率。
  • LSTM算法.zip
    优质
    本项目提供了一种基于长短期记忆网络(LSTM)的短期光伏发电功率预测方法。通过分析历史气象数据和发电量,模型能够有效预测未来几小时内的光伏输出,为电力调度与管理提供决策支持。 数据包括历史光伏逆变器记录。首先使用pycaret筛选模型,然后利用tensorflow-keras框架构建LSTM网络以完成光伏发电预测。
  • 适用输出引入方法.zip
    优质
    本研究探讨了一种将关键气象因素应用于光伏系统发电量预测的方法,旨在提高预测模型的准确性和实用性。 在光伏基础预测中引入气象影响因子可以提高光伏出力的预测精度。适合使用MATLAB进行仿真的初学者包括那些刚开始接触光伏预测的人。
  • 考虑分布式出力方法研究.zip
    优质
    本研究探讨了将气象因素融入分布式光伏发电输出功率预测的方法,旨在提高预测精度和可靠性。通过分析天气条件对发电量的影响,提出了一种有效的预测模型。 本段落研究了一种结合经验模态分解(EMD)、主成分分析(PCA)以及长短期记忆神经网络(LSTM)的分布式光伏发电功率预测方法,以提高光伏出力预测精度,确保电力系统的安全调度与稳定运行。该模型充分考虑了影响光伏输出功率的五种环境因素:首先通过EMD技术将这些环境因素序列分解为不同时间尺度的变化情况,降低了非平稳性;然后利用PCA提取关键特征因子,并消除原始数据的相关性和冗余信息,减少输入维度;最后采用LSTM网络对多变量特征进行动态建模以预测光伏发电功率。实验结果基于山西省某电站八个月的实际测量数据验证了该模型相较于传统方法具有更高的精确度。
  • 输出几种方法探讨.docx
    优质
    本文档深入探讨了几种用于光伏发电系统的超短期输出功率的概率预测方法,旨在提高预测精度和可靠性。 光伏发电超短期输出功率的概率预测是太阳能发电领域中的一个重要研究课题,它直接影响到电力系统的稳定运行及电力市场的交易策略。本段落探讨了几种用于提升光伏发电功率预测准确性的方法,包括极端学习机(ELM)、帕累托优化以及非支配排序遗传算法(NSGA-II)等。 极端学习机是一种快速高效的神经网络模型,在处理复杂的非线性数据时展现出显著优势。它通过随机初始化隐藏层节点的权重和偏置,并仅对输出层进行训练,从而大大减少了计算时间并提高了预测精度。在光伏发电功率预测中,ELM能够准确捕捉光伏系统输出功率的变化特性。 帕累托优化是一种多目标优化方法,在处理如发电功率预测中的多个相互冲突的目标时表现出色。例如,在平衡预测精确度与计算效率之间寻找最优解时,帕累托前沿能提供一系列可选方案供决策者参考。 非支配排序遗传算法(NSGA-II)基于遗传算法原理,利用非支配层次和拥挤距离的概念来筛选和进化种群,从而找到多个优化解决方案。在光伏发电功率预测中应用此方法能够帮助电力系统管理者获得多种不同的预测策略选择。 此外,Bootstrap抽样重采样技术可用于评估模型的稳定性和不确定性,并提高预测结果的可信度,在数据分析领域内被广泛采用并应用于提升光伏输出功率预测的质量和可靠性。 综上所述,本段落通过研究包括ELM、帕累托优化及NSGA-II在内的多种现代机器学习方法的应用情况以及可能结合Bootstrap方法来进一步增强模型性能,旨在为光伏发电系统的高效运行及其在电力市场中的有效交易策略制定提供支持。