Advertisement

PWM脉宽调制信号输入的模拟信号输出隔离变送器

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
这款PWM脉宽调制信号输入的模拟信号输出隔离变送器能够精准地将PWM信号转换为稳定的模拟电压或电流信号,并确保电气隔离,适用于工业自动化和测量系统中可靠的数据传输。 精度等级为0.2级和0.5级的产品在出厂前已经过检验校正,用户可以直接使用。 辅助电源支持的电压范围包括5V、12V、15V及24VDC(允许±10%波动)。 PWM脉宽调制信号输入频率范围从50Hz到100KHz。 输出标准信号类型多样,如0-5V、0-10V、1-5V以及电流型的0-10mA、0-20mA和4-20mA等,并且具备高负载能力。 产品在整个量程范围内表现出极高的线性度(非线性误差小于0.2%)。 采用标准DIN35导轨式安装方式,便于固定与使用。 此外,该设备具有较强的抗电磁干扰及高频信号干扰的能力。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PWM
    优质
    这款PWM脉宽调制信号输入的模拟信号输出隔离变送器能够精准地将PWM信号转换为稳定的模拟电压或电流信号,并确保电气隔离,适用于工业自动化和测量系统中可靠的数据传输。 精度等级为0.2级和0.5级的产品在出厂前已经过检验校正,用户可以直接使用。 辅助电源支持的电压范围包括5V、12V、15V及24VDC(允许±10%波动)。 PWM脉宽调制信号输入频率范围从50Hz到100KHz。 输出标准信号类型多样,如0-5V、0-10V、1-5V以及电流型的0-10mA、0-20mA和4-20mA等,并且具备高负载能力。 产品在整个量程范围内表现出极高的线性度(非线性误差小于0.2%)。 采用标准DIN35导轨式安装方式,便于固定与使用。 此外,该设备具有较强的抗电磁干扰及高频信号干扰的能力。
  • 整流远程 (2014年)
    优质
    本文探讨了在脉宽调制整流器系统中,如何实现模拟信号的安全、高效远程隔离传输,确保数据的准确性和系统的稳定性。 本段落提出了一种适用于高压环境下远距离传输模拟信号的方法。该方法利用AD650构成压频和频压转换电路,首先将模拟信号转换成±5V电压范围内的电信号,然后通过压频电路将其线性地转化为一定频率的方波脉冲序列,并经由光纤传送到远处的控制中心。在接收端,脉冲列被送入频压转换电路还原为电压信号,最后经过AD芯片转换成数字信号并输入控制器进行处理。 文中设计了具体的电路结构和参数,并进行了实验验证。结果显示:所提出的方法能够有效传输模拟信号,不会出现衰减现象且具备良好的抗干扰性能。该方案的传输距离可达200米,在此过程中延时小于20微秒。
  • STM32F103 控 PWM
    优质
    本教程详细介绍如何使用STM32F103微控制器通过定时器模块控制PWM信号的产生和调节,适用于电机驱动等应用场景。 使用STM32F103VET6控制PWM输出频率可调的方波,并通过按键调节频率,在LCD1602上显示频率值。这是一个从MCU51过渡到STM32的学习项目,包含完整的工程文件,在user目录下有prj文件,建议使用Keil4打开。该项目完全原创并已成功试用,LCD输出与按键输入的IO仅供参考。
  • STM32F103 控 PWM
    优质
    本简介介绍如何使用STM32F103微控制器生成和控制PWM信号输出,涵盖硬件配置、软件编程及应用实例。 使用STM32F103VET6控制PWM输出频率可调的方波,并通过按键调节频率。LCD1602用于显示当前频率值。这是一个从MCU51到STM32进阶学习的练习项目,包含完整的工程文件,在user目录中有prj文件,请使用Keil4打开。该项目完全原创并已成功试用,LCD输出与按键输入IO仅供参考。
  • STM32六路PWM
    优质
    本项目详细介绍如何在STM32微控制器上实现六路独立可调的脉冲宽度调制(PWM)信号输出,并探讨其应用与调试方法。 该代码可以输出六种不同的脉冲信号,简洁易用且稳定可靠。
  • STM32F407 PWM 波.zip_STM32F407 PWM 波形_STM32F407 PWM
    优质
    本资源提供关于STM32F407微控制器生成PWM波形的详细介绍,包括配置步骤和代码示例。帮助开发者轻松实现精确控制电机或LED亮度等应用需求。 使用STM32F407生成可调频率和占空比的PWM波。
  • 基于STM32F103C8T6PWM
    优质
    本项目介绍了一种基于STM32F103C8T6微控制器实现脉冲宽度调制(PWM)信号输出的方法,适用于电机控制、LED调光等应用场景。 使用STM32F103C8T6作为主控芯片,在KEIL5开发环境中实现可调占空比的PWM输出功能。
  • STC12C5A60S2单片机控PWM
    优质
    本项目介绍如何使用STC12C5A60S2单片机生成脉宽调制(PWM)信号,并探讨其在电机控制、LED亮度调节等领域的应用。 使用P4口输出PWM信号,并通过按键调节占空比,同时用数码管显示数据。这是一个完整的工程项目,在Keil4中打开即可运行。
  • Sin.rar
    优质
    本资源探讨了Sin信号在电子系统中的处理流程,涵盖了信号输入、转换及输出的关键技术细节和应用实例。适合从事相关领域研究的技术人员参考学习。 在IT领域特别是数字信号处理、模拟电子技术和软件工程等领域中,“sin信号输入输出”这一主题涵盖了多个关键知识点。根据文件名的提示,可能包含与正弦波信号生成、处理或分析相关的资料。 1. **正弦波信号**:这是一种基本周期性连续信号,在通信、音频处理和科学计算等众多领域广泛应用。其数学表达式为y = A * sin(2πf * t + φ),其中A代表振幅,f表示频率,t是时间变量,φ则指相位。 2. **信号输入**:在数字系统中,“输入”通常指的是将模拟正弦波转换成计算机或处理器可以处理的离散数值的过程。此过程涉及模数转换(ADC),即将连续变化的电压值转化为一系列二进制数据点。 3. **信号输出**:这可能包括从数字形式转回为可感知的形式,如声音或图像;也可能指的是经过各种算法处理后的数字信号结果展示出来的方式。这一环节通常需要通过数模转换器(DAC)来完成。 4. **信号处理**:在许多应用场景中,正弦波会经历滤波、放大等操作以达到特定目的。比如低通滤波用于抑制高频噪声;而混合则可以创造新的频率组合。 5. **软件工具**:为了生成或分析正弦波数据,工程师们常常使用MATLAB、Python的SciPy和NumPy库或者是LabVIEW这样的专业软件平台来实现复杂的计算任务。 6. **数字信号处理**:在数字化环境中工作时,傅里叶变换是不可或缺的技术之一。它可以将时间域内的信号转变为频率成分表示形式,有助于深入理解其构成特点。 7. **硬件实现**:实际应用中往往需要借助微控制器或专用集成电路(如AD和DA转换器)来完成对正弦波的输入输出操作。 8. **应用领域**:从通信系统的调制解调到音频设备的声音播放与录制,再到科学研究中的振动分析等,正弦信号的应用范围非常广泛且多样化。 9. **文件列表**:“sin信号输入输出”可能包含各种类型的文档和资料集,如源代码、实验数据或教程指南,帮助用户掌握如何有效生成、处理及解读正弦波信号的技术知识。
  • 利用PID算法节STM32PWM
    优质
    本项目采用PID控制策略优化STM32微控制器的脉冲宽度调制(PWM)信号输出,实现精确的电压或电流控制,适用于电机驱动和电源管理等应用场景。 通过PID算法控制STM32的PWM输出可以实现更精确的控制系统调节。简洁地应用PID控制来调整PWM信号,能够优化系统的响应速度和稳定性。