Advertisement

STM32F407结合mbed和LWIP的LAN8720示例程序

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本示例程序展示了如何在STM32F407微控制器上利用mbed操作系统和LWIP协议栈,通过集成的LAN8720以太网接口实现网络通信功能。 STM32F407是由意法半导体(STMicroelectronics)开发的一款高性能、低功耗微控制器,基于Cortex-M4内核的STM32系列。它配备多种外设接口及强大的处理能力,适用于各种嵌入式应用场景,特别是在网络通信领域。 Mbed是一个开源硬件平台,提供了一个在线开发环境,并支持包括STM32F407在内的多款微控制器。Mbed OS是专为ARM架构设备设计的实时操作系统,针对物联网设备提供了完整的软件堆栈,如TCP/IP协议栈、文件系统和安全特性等。 LwIP(Lightweight TCP/IP stack)是一个专门用于嵌入式系统的轻量级网络协议库,实现了包括TCP、UDP、ICMP及DHCP在内的大部分TCPIP功能。这使得嵌入式设备能够连接到互联网成为可能。 LAN8720是Microchip公司生产的以太网物理层收发器(PHY),适用于STM32F407等微控制器与以太网络的连接。它符合IEEE 802.3标准,支持RJ45接口、10/100Mbps速率,并具备自动协商和MDIMDIX功能,无需外部电平转换。 名为mbed-os-tcp-server-example的文件显示这是一个使用Mbed OS构建TCP服务器示例代码。开发者将来自Mbed官方针对NUCLEO-F446RE(另一种STM32开发板)的TCP服务器代码移植到适用于STM32F407,这通常涉及配置中断、定时器、串行通信和网络堆栈设置等步骤。 在实际应用中,这一示例可能包括以下关键步骤: 1. 初始化:设定系统时钟并初始化STM32F407的GPIO(通用输入输出)、定时器及ADC(模数转换)硬件资源。连接LAN8720,并配置其工作模式。 2. 配置LWIP:设置网络接口,包括IP地址、子网掩码和默认网关等信息;同时对TCP/IP堆栈进行相应配置。 3. 构建TCP服务器:利用LwIP API创建一个监听特定端口的TCP服务器,并等待客户端连接请求。 4. 数据交换与传输:当有客户设备尝试建立连接时,处理这些请求并实现数据接收和发送。TCP协议确保了数据传输过程中的可靠性。 5. 错误管理:包含异常情况下的错误处理及恢复机制,以保证程序在遇到问题时仍能稳定运行。 6. 能耗优化策略:对于依赖电池供电的设备来说,在没有连接活动期间关闭网络接口或进入低功耗模式可能是必要的节能措施。 通过上述示例代码的学习与实践,开发者可以掌握如何利用STM32F407硬件资源结合Mbed OS和LwIP来实现TCP服务功能。这有助于构建自己的物联网产品如远程监控系统、数据采集站或者智能家居控制系统等,并深化对嵌入式技术、网络通信以及实时操作系统领域的理解。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F407mbedLWIPLAN8720
    优质
    本示例程序展示了如何在STM32F407微控制器上利用mbed操作系统和LWIP协议栈,通过集成的LAN8720以太网接口实现网络通信功能。 STM32F407是由意法半导体(STMicroelectronics)开发的一款高性能、低功耗微控制器,基于Cortex-M4内核的STM32系列。它配备多种外设接口及强大的处理能力,适用于各种嵌入式应用场景,特别是在网络通信领域。 Mbed是一个开源硬件平台,提供了一个在线开发环境,并支持包括STM32F407在内的多款微控制器。Mbed OS是专为ARM架构设备设计的实时操作系统,针对物联网设备提供了完整的软件堆栈,如TCP/IP协议栈、文件系统和安全特性等。 LwIP(Lightweight TCP/IP stack)是一个专门用于嵌入式系统的轻量级网络协议库,实现了包括TCP、UDP、ICMP及DHCP在内的大部分TCPIP功能。这使得嵌入式设备能够连接到互联网成为可能。 LAN8720是Microchip公司生产的以太网物理层收发器(PHY),适用于STM32F407等微控制器与以太网络的连接。它符合IEEE 802.3标准,支持RJ45接口、10/100Mbps速率,并具备自动协商和MDIMDIX功能,无需外部电平转换。 名为mbed-os-tcp-server-example的文件显示这是一个使用Mbed OS构建TCP服务器示例代码。开发者将来自Mbed官方针对NUCLEO-F446RE(另一种STM32开发板)的TCP服务器代码移植到适用于STM32F407,这通常涉及配置中断、定时器、串行通信和网络堆栈设置等步骤。 在实际应用中,这一示例可能包括以下关键步骤: 1. 初始化:设定系统时钟并初始化STM32F407的GPIO(通用输入输出)、定时器及ADC(模数转换)硬件资源。连接LAN8720,并配置其工作模式。 2. 配置LWIP:设置网络接口,包括IP地址、子网掩码和默认网关等信息;同时对TCP/IP堆栈进行相应配置。 3. 构建TCP服务器:利用LwIP API创建一个监听特定端口的TCP服务器,并等待客户端连接请求。 4. 数据交换与传输:当有客户设备尝试建立连接时,处理这些请求并实现数据接收和发送。TCP协议确保了数据传输过程中的可靠性。 5. 错误管理:包含异常情况下的错误处理及恢复机制,以保证程序在遇到问题时仍能稳定运行。 6. 能耗优化策略:对于依赖电池供电的设备来说,在没有连接活动期间关闭网络接口或进入低功耗模式可能是必要的节能措施。 通过上述示例代码的学习与实践,开发者可以掌握如何利用STM32F407硬件资源结合Mbed OS和LwIP来实现TCP服务功能。这有助于构建自己的物联网产品如远程监控系统、数据采集站或者智能家居控制系统等,并深化对嵌入式技术、网络通信以及实时操作系统领域的理解。
  • STM32F4LWIPLAN8720
    优质
    本项目基于STM32F4微控制器,并利用LWIP协议栈与LAN8720以太网控制器实现网络通信功能。 STM32F4系列是意法半导体(STMicroelectronics)推出的高性能微控制器,基于ARM Cortex-M4内核,在嵌入式系统设计中广泛应用。本项目选用STM32F429作为硬件平台,它具备丰富的外设接口和强大的计算能力,非常适合进行网络通信任务。 LWIP是一个开源的TCP/IP协议栈,专为资源有限的嵌入式系统设计,提供轻量级、高效且易于集成的网络功能。它可以支持包括TCP、UDP、ICMP、DHCP及DNS在内的多种网络协议,满足各种应用需求。 在STM32F429开发板上实现网络通信时,通常会利用片内集成的Ethernet MAC接口处理以太网帧的发送和接收。然而,MAC接口需要配合外部PHY芯片如LAN8720使用才能连接到物理网络。LAN8720实现了MII或RMII接口,并与STM32F4系列MCU兼容,负责完成信号编码、解码及放大等任务。 将LWIP移植至STM32F429开发板上时,首先需配置以太网初始化代码,涉及设置MAC地址、初始化PHY芯片以及配置中断。这通常需要调用HAL库或LL(Low-Layer)库的函数完成。接下来,在LWIP配置文件中设定适当的参数如网络接口类型、IP地址、子网掩码和默认网关。 在使用UCOSIII操作系统时,需确保与TCP/IP协议栈协同工作,例如通过互斥锁保护共享资源来避免并发访问问题。应用层通过API接口调用LWIP库函数进行socket创建、端口绑定等操作以实现网络通信功能。 实验步骤通常包括: 1. 硬件连接:正确连接STM32F429的MAC接口与LAN8720 PHY芯片,确保电源和数据线无误。 2. 软件配置:编写或修改初始化代码来设置以太网MAC及PHY参数。 3. LwIP移植:根据需求调整网络接口配置并集成LWIP库至UCOSIII操作系统中。 4. 测试验证:通过发送接收数据包测试网络通信功能。 文件“实验三 LWIP带UCOSIII操作系统移植”可能包含具体步骤、配置文件和示例代码,帮助开发者在STM32F429开发板上实现基于LWIP的网络服务,并结合多任务操作系统的特性。
  • STM32F407LAN8720LWIP进行FreeModbus TCP移植.zip
    优质
    本项目提供了在STM32F407微控制器上使用LAN8720以太网芯片及LwIP协议栈实现FreeModbus TCP通信的解决方案,适用于工业自动化与物联网应用。 STM32F407移植freemodbus和LWIP进行Modbus TCP实验的代码已验证通过,可以直接使用。
  • STM32F407LWIPDP83848移植代码
    优质
    本项目提供STM32F407微控制器上集成LWIP协议栈与DP83848以太网收发器的详细移植实例,适用于网络通信开发入门。 该例程实现了基于STM32+LWIP+DP83848的TCP/IP服务器无操作系统服务程序。它完成了TCP/IP数据收发的功能。在硬件方面,并未使用外部内存,更加大众化,只需一块STM32 407开发板加上DP83848即可实现所需功能。压缩包内包含具体说明文件以供参考。
  • 基于STM32F407FreeRTOSLwIPLAN8720在CubeMX中配置
    优质
    本项目通过STM32CubeMX工具进行硬件初始化,并基于STM32F407微控制器及FreeRTOS操作系统,展示如何配置LwIP协议栈和LAN8720以太网控制器的实例。 使用STM32CubeMX生成的MDK5工程经过测试可以ping通,具有简单易用的特点。
  • STM32F407UCOSIIILWIP
    优质
    本项目基于STM32F407微控制器,采用uCOS III操作系统及LwIP协议栈,实现高效网络通信功能。 此源码在STM32F407上移植了UCOS和LWIP,并使用DP83848作为网络芯片,采用了LWIP的NETCONN编程方式。案例中使用的服务器端协议是UDP。具体操作步骤请参阅源码中的操作文档。
  • STM32F407FreeRTOSLwIP
    优质
    本项目基于STM32F407微控制器,采用FreeRTOS操作系统及LwIP网络协议栈,实现高效的任务管理和稳定的网络通信功能。 STM32F407 使用 lwIP 和 FreeRTOS 操作系统移植,并支持网线热插拔功能。
  • STM32F407FreeRTOS、LAN8720LWIP 1.4.1实现DHCP功能(使用标准库MDK5)
    优质
    本项目基于STM32F407微控制器,采用ST标准库及MDK5开发环境,通过集成FreeRTOS实时操作系统、LAN8720以太网控制器与LWIP 1.4.1网络协议栈,实现动态主机配置协议(DHCP)功能,支持自动获取IP地址。 本例程是在正点原子STM32F4探索者开发板的平台上使用标准库和MDK5工程实现的。参考了大神移植说明以及《ALIENTEK STM32F4 LWIP的开发手册》,实现了FreeRTOS的LWIP移植,并且集成了DHCP功能。该例程可以直接在正点原子探索者开发板上运行。
  • STM32F407LAN8720LWIPFreeModbus TCP中应用
    优质
    本项目探讨了基于STM32F407微控制器结合LAN8720以太网接口芯片,在LwIP协议栈及FreeModbus TCP通信库上的实现方案,展示了其在网络控制与自动化领域的应用价值。 STM32F407是一款基于ARM Cortex-M4内核的微控制器,由意法半导体(STMicroelectronics)生产。这款微控制器具有高性能、低功耗的特点,广泛应用于嵌入式系统,特别是工业自动化、物联网(IoT)设备以及通信模块等领域。在STM32F407的应用中,通常会结合各种外设和通信协议来实现不同功能。 LAN8720是Microchip Technology公司生产的一款以太网物理层(PHY)芯片,用于连接STM32F407与以太网网络。它支持10/100Mbps速度,符合IEEE 802.3标准,并提供RJ45接口,可以为STM32F407提供硬件级的网络连接功能。 LWIP(Lightweight TCPIP stack)是一个开源、轻量级的TCP/IP协议栈,适用于资源有限的嵌入式系统。LWIP可以在STM32F407上运行,并能提供包括TCP、UDP、ICMP和DHCP在内的多种服务,使STM32能够接入互联网或局域网进行数据传输。 FreeModbus TCP是一个免费开源的Modbus TCP库,在TCPIP网络环境下实现工业通信协议。该协议广泛应用于PLC系统、SCADA设备及各种传感器与执行器之间,用于简单有效且高效的通讯处理。 结合上述信息,这个项目或者教程可能涵盖以下知识点: 1. **STM32F407的硬件接口和配置**:如何设置微控制器的各种资源如GPIO端口、定时器以及中断等以驱动LAN8720芯片并管理网络数据。 2. **LAN8720的驱动开发**:理解该芯片的数据手册,编写初始化代码,并进行PHY芯片的相关配置工作,例如选择MIIM/RMII模式、自动协商及速度和双工设置等。 3. **LWIP集成与配置**:在STM32F407平台上移植并运行LWIP协议栈。设定网络接口参数如MAC地址、IP地址以及子网掩码,并对TCPIP堆栈进行性能优化。 4. **FreeModbus TCP的应用**:理解Modbus TCP协议,学习如何使用该库在STM32F407上建立服务器和客户端环境并执行数据读写操作及异常处理。 5. **以太网通信流程**:涵盖从发送ARP请求获取MAC地址到TCP三次握手建立连接以及通过Modbus协议进行的数据传输等整个网络通讯过程的实现。 6. **RTOS(实时操作系统)的应用**:鉴于STM32F407项目可能需要处理多个任务,可能会使用如FreeRTOS这样的RTOS来管理任务调度和内存分配。 7. **应用层编程实践**:设计上层应用程序,例如Web服务器、数据采集系统或远程控制系统等,并利用TCPIP及Modbus协议进行通信。 8. **调试技巧与工具的运用**:通过串口、JTAG或USB接口进行程序调试;使用网络分析软件如Wireshark来捕获并解析网络通讯的数据包。 通过这个项目,开发者能够掌握STM32F407微控制器底层驱动开发技术,理解及实现各种网络通信协议,并学会如何在嵌入式环境中整合多种技术和资源以构建一个完整的工业级网络通信系统。
  • STM32F407代码(含LwIP
    优质
    本资源提供STM32F407微控制器的示例程序代码,并集成了轻量级TCP/IP协议栈LwIP,适用于网络通信开发。 STM32F407是一款基于ARM Cortex-M4内核的微控制器,由意法半导体(STMicroelectronics)生产。该芯片广泛应用于嵌入式系统设计,在工业控制、物联网设备及消费电子等领域有广泛应用。STM32F407包含丰富的外设接口,包括CAN总线、USB连接、以太网以及多种串行通信接口,并且内置浮点运算单元支持高效的浮点计算。 LWIP(Lightweight TCPIP stack)是一个轻量级的网络协议栈,适用于资源有限的嵌入式系统。它提供了TCP/IP协议的支持,包括TCP、UDP、ICMP和IPv4等,使STM32这类微控制器能够接入互联网进行数据传输。 这个STM32F407例程源码(含lwip)是开发者学习并开发STM32F407项目的重要参考资料。通过这些代码可以深入了解如何在STM32F407上配置和使用LWIP,实现网络通信功能。以下是几个关键知识点: 1. **STM32CubeMX配置**:通常会利用STM32CubeMX工具来初始化MCU的外设配置,包括时钟、GPIO接口设置、中断管理以及DMA等,并生成相应的代码框架。 2. **HAL库使用**:在STM32F407例程中,开发者常使用ST提供的硬件抽象层(Hardware Abstraction Layer, HAL)库函数来简化与硬件的交互。通过这些高级别API可以操作GPIO、串行通信端口和以太网等外设。 3. **以太网控制器初始化**:STM32F407可能采用EMAC(Ethernet Media Access Controller,以太网媒体接入控制)作为物理层接口来实现网络连接。需要配置MAC地址、PHY设置及中断管理等功能。 4. **LWIP配置**:开发者需对LWIP进行端口适配、内存管理和定义网络接口的设定等操作。比如指定网络接口的MAC和IPv4地址,以及TCP或UDP服务的相关信息。 5. **TCPIP协议处理**:在LWIP源码中会实现TCP连接管理、数据包发送接收及UDP消息传输等功能模块。开发者需要掌握如何创建连接、交换数据并响应各种网络事件的技术细节。 6. **中断服务程序(ISRs)**:以太网通信的数据收发通常通过硬件触发的ISR完成。这些服务例程负责处理接收到的数据,确认已发送的信息或报告错误情况等任务。 7. **应用层编程**:基于LWIP协议栈之上可以开发各种具体的应用功能,例如HTTP服务器、FTP客户端或者MQTT通讯机制等。 8. **调试与优化**:通过串口通信接口、JTAG(Joint Test Action Group)或SWD(Serial Wire Debug)等方式进行程序的测试和调优工作。观察网络交互的状态并调整代码以提高性能及减少资源消耗。 9. **内存管理**:为了支持协议栈的数据结构存储,如TCP连接表、IP包缓冲区等需求,LWIP需要合理的内存分配策略。了解STM32F407的内存布局对于优化整个系统的效率至关重要。 通过研究和实践这些源代码示例,开发者能够增强在STM32F407与LWIP上的开发能力,并更好地实现嵌入式设备中的网络功能需求。