Advertisement

集成电路内的电压/电流及电压/频率转换电路(V/I、V/F电路)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介探讨集成电路中的V/I和V/F转换电路,涉及将输入电压转化为输出电流或频率的技术原理与应用,适用于信号处理和传感器接口等领域。 电压/电流转换电路(V/I转换)是将输入的电压信号转化为满足一定关系的电流信号的过程。这种转换生成一个输出可调且稳定的恒流源,其输出电流不会因负载变化而波动。 如图1所示,该电路主要由运算放大器LM324和三极管BG9013及其他辅助元件构成。其中V0为偏置电压,Vin是输入的待转换电压信号,R代表负载电阻。运放作为比较器工作,将正相端的输入信号与反相端电压V-进行对比,并放大输出;随后通过三极管进一步放大电流。BG9013射级电流Ie在电位器Rw上形成压降。 由运算放大器的工作性质可知: \[ V_- = I_e \cdot R_w = (1 + k) I_b \cdot R_w \] 其中,k为BG901的增益系数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • //(V/IV/F)
    优质
    本简介探讨集成电路中的V/I和V/F转换电路,涉及将输入电压转化为输出电流或频率的技术原理与应用,适用于信号处理和传感器接口等领域。 电压/电流转换电路(V/I转换)是将输入的电压信号转化为满足一定关系的电流信号的过程。这种转换生成一个输出可调且稳定的恒流源,其输出电流不会因负载变化而波动。 如图1所示,该电路主要由运算放大器LM324和三极管BG9013及其他辅助元件构成。其中V0为偏置电压,Vin是输入的待转换电压信号,R代表负载电阻。运放作为比较器工作,将正相端的输入信号与反相端电压V-进行对比,并放大输出;随后通过三极管进一步放大电流。BG9013射级电流Ie在电位器Rw上形成压降。 由运算放大器的工作性质可知: \[ V_- = I_e \cdot R_w = (1 + k) I_b \cdot R_w \] 其中,k为BG901的增益系数。
  • //(V/IV/F)
    优质
    简介:电压/电流(V/I)和电压/频率(V/F)转换电路是将输入信号从电压形式转化为电流或频率形式的关键电子元件,广泛应用于工业自动化与控制系统中。 本段落介绍了如何实现电压/电流与电压/频率的转换电路。
  • V/F报告
    优质
    本报告详细探讨了V/F(电压/频率)转换电路的设计与实现,分析了其工作原理和应用,并通过实验数据展示了该电路在信号处理中的高效性和准确性。 大三的课程设计报告对于初次撰写电路实验报告的人来说会有帮助。
  • 优质
    《电压与频率转换电路》是一篇介绍如何将输入电压信号转化为相应比例频率输出信号的技术文档。文中详细探讨了此类电路的设计原理、应用领域以及优化方案,为电子工程领域的研究人员和工程师提供了宝贵的参考信息。 在电子工程领域,频率转电压(F/V)和电压转频率(V/F)是两种重要的信号转换技术,在数据采集、信号处理及控制系统中有着广泛应用。本段落将详细探讨这两种转换电路的工作原理、应用以及如何使用Proteus软件进行仿真。 **频率转电压(F/V)转换器:** 这种转换器能够把输入的频率信号转化为对应的直流电压输出,常用于测量脉冲或周期性信号的频率,例如传感器产生的脉冲。LM351是一种常用的集成F/V芯片,内含振荡器和积分器等组件。当输入频率变化时,其内部振荡器也随之调整,并通过积分器转换成相应的电压值,最终输出与输入频率呈正比关系的直流电压。 **电压转频率(V/F)转换器:** 与此相反,这种类型的转换电路将给定的直流电压转化为脉冲信号的形式。它在模拟量到数字量转化中扮演关键角色,并且便于后续处理。同样地,LM351也可用于实现这一功能,利用内部比较器和计数器组件来确定输出频率与输入电压之间的比例关系。 **LM351芯片详解:** 作为一款多功能的模拟集成电路,LM351可用于F/V及V/F转换,并且具备可编程增益以及输出范围调节的特点。它包含有比较器、振荡器、积分器和控制逻辑等核心部分,在F/V模式下输入频率影响内部振荡周期;而在V/F情况下,则是通过改变参考电压来调整输出脉冲的频率。 **Proteus仿真:** 作为一款强大的电子电路设计与模拟工具,Proteus软件能够帮助用户实现并验证复杂电路的功能。在探讨上述两种转换器时,我们可以通过该平台加载特定的设计文件(如`fv.DSN`和`vf.DSN`),观察LM351芯片在不同条件下的工作表现,并进一步优化设计方案。 通过使用Proteus进行仿真分析,我们可以更好地理解电压与频率之间的相互作用关系以及调整参数对整体性能的影响。这对于深入学习并掌握F/V及V/F转换技术至关重要。 总结而言,无论是用于频率测量还是信号处理等领域,这两种类型的电路都发挥着重要作用;而LM351芯片凭借其多功能性和灵活性,在实现上述功能方面提供了极大的便利性。同时借助Proteus仿真软件的支持,则能够更有效地优化设计方案并提升整体的设计水平。
  • 基于运放V-II-V
    优质
    本文章介绍了一种基于运算放大器设计的电压-电流(V-I)及电流-电压(I-V)转换电路。该电路结构简洁、性能稳定,适用于多种电子测量场景。 本段落主要为读者提供了六种由运放组成的V-I、I-V转换电路,供读者在电路设计中参考。
  • 优质
    本资料提供了一种详细的电流电压转换电路设计方案及其应用说明,包括关键元件选择和参数设定,适用于电子测量与控制系统。 电压-电流转换模块由精密运放与三个晶体管构成的达林顿管电路组成。该转换电路利用了晶体管平坦的输出特性和深度负反馈来使输出电流稳定,其带负载能力强,能够提供0至3A范围内的电流输出。 在这一过程中,输出电流Io通过一个反馈电阻RF产生了一个反馈电压Vf,计算公式为:Vf = V11 - V12。这个电压随后经过R5和R6的分压作用被加到运算放大器的两个输入端上。设运放两端的电压分别为V1和V2,并且Vi是由单片机DAC输出的信号。 由于理想状态下,运放的输入电流几乎为零,同时满足V1 = V2 的条件,则有:\[V_{12}[1 - \frac{R6}{(R2 + R6)}] + Vi\frac{R6}{(R2+R6)}= V_{11}\frac{R1(R1+R6)}{(R1+R5)^2}\] 另外,因为V12 = V11 - Vf,则可得:\[V_{11} \frac{R2}{(R2 + R6)}+\left(\frac{Vi R6-Vf R2 }{(R2 + R6)}\right)= V_{11}\frac{R1}{(R1+R5)}\] 假设电阻值为:\[R_1 = R_2 = 10kW,\] \[R_5 = R_6 = 1kW ,则有:Vf=Vi/10。\] 如果暂不考虑反馈时,则Io可表示为:\[Io=\frac{Vi}{(10RF)}.\] 由此可见,输出电流的标定取决于DAC转换信号所得电压Vi和电阻Rf值。这种变换关系是线性的。 为了减小温度对电路的影响,电阻Rf应由大直径铜丝制作而成,其温度系数非常低(仅为5ppm/℃),并且较大的导体横截面有助于减少温升效应。同时,在选择三个三极管时建议使用功率大的TIP122型号,并且要配备散热片以确保晶体管的正常工作状态。
  • 常见
    优质
    本文章介绍了常见的电流电压转换电路的工作原理和应用,包括简单的电阻分压器、运算放大器构建的转換电路等。适合电子工程爱好者和技术人员参考学习。 常用电流电压转换电路在电子工程领域中有广泛应用。这类电路能够将传感器或其他设备输出的电流信号转化为电压信号,便于后续处理或测量。设计这种转换电路时需要考虑的因素包括输入阻抗、精度要求以及功耗等。常用的实现方法有使用运算放大器构建的I-V转换器和基于电阻网络的设计方案。通过合理选择元器件参数可以优化性能指标,满足不同应用场景的需求。
  • 更新版(恒
    优质
    本设计提供了一种改进型电压电流转换电路,尤其适用于恒流源应用。通过优化元件配置和减少误差,该电路提高了稳定性和效率,广泛应用于电子设备中。 电压电流转换电路(或称为恒流源电路)是一个非常常见的电路设计,在许多项目中都会遇到。这次我打算撰写一份文档,既为了自己回顾参考,也希望对其他人有所帮助。
  • V-F原理示意图
    优质
    V-F转换电路是一种将电压信号转化为频率信号的重要电子线路。本文图解了该电路的基本工作原理和结构设计,有助于深入理解其在各类控制系统中的应用价值。 能用的V-F转换电路可以实现0.2V到6V电压范围内的信号转换为200Hz到6kHz频率范围内的信号。
  • (恒)更新版20170803
    优质
    本资料为《电压电流转换电路(恒流源电路)》更新版,详细介绍了如何设计及优化电压到电流的高效转换方案,适用于电子工程领域的学习与研究。 电压电流转换电路(也称为恒流源电路)是一种常见的电路设计。我仔细分析了这种电路,并记录下来供自己参考,同时也分享给大家作为参考。