Advertisement

基于 PyTorch 的 CNN 图像分类实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用PyTorch框架,实现了卷积神经网络(CNN)在图像分类任务中的应用,展示了如何利用深度学习技术进行高效的图像识别。 本段落主要介绍了如何使用Pytorch实现基于CNN的图像分类,并通过详细的示例代码进行了讲解。文章内容对于学习或工作中需要这方面知识的人士具有一定的参考价值,希望有需求的朋友能够从中受益。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PyTorch CNN
    优质
    本项目采用PyTorch框架,实现了卷积神经网络(CNN)在图像分类任务中的应用,展示了如何利用深度学习技术进行高效的图像识别。 本段落主要介绍了如何使用Pytorch实现基于CNN的图像分类,并通过详细的示例代码进行了讲解。文章内容对于学习或工作中需要这方面知识的人士具有一定的参考价值,希望有需求的朋友能够从中受益。
  • 使用 PyTorch CNN
    优质
    本项目利用PyTorch框架实现卷积神经网络(CNN)进行图像分类任务。通过训练CNN模型,能够有效识别和分类不同类别的图像数据。 在4*4的图片中比较外围黑色像素点与内圈黑色像素点的数量,并根据数量差异将图片分类为两类:如果外围黑色像素点多于内圈,则归类为0,反之则为1。 为了实现这一任务,可以使用numpy和PIL库生成随机的二值图像数据集。首先通过`buildDataset`函数创建一个包含4*4大小、黑白两种颜色(分别用数值0和1表示)的数据集,并将这些图片保存为.jpg格式文件;同时计算每个图中外围与内圈黑色像素的数量差,以此作为标签信息。 接下来需要设计自定义数据集类`MyDataset`继承于`torch.utils.data.Dataset`。该类从CSV文件加载图像路径及对应的分类标签,并提供必要的方法支持批量读取和处理功能,例如使用预处理器调整图片尺寸或归一化等操作。 在构建CNN模型时有两种方案:一种是在4*4的输入上直接应用1x1卷积层来提取特征;另一种是通过给原始图像添加padding使其变为6*6大小后采用2x2的卷积核进行处理,最终输出一个3*3的结果图。这两种方法都可以连接全连接层完成分类任务。 具体的PyTorch模型定义如下: ```python import torch.nn as nn class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() # 1x1卷积方案: # self.conv = nn.Conv2d(1, 8, kernel_size=1) # 或者 self.conv1 = nn.Conv2d(1, 8, kernel_size=2, padding=1) self.relu = nn.ReLU() self.fc1 = nn.Linear(8 * 3 * 3, 50) self.fc2 = nn.Linear(50, 2) def forward(self, x): # 使用卷积层 x = self.conv1(x) x = self.relu(x) # 展平特征图并进行全连接操作 x = torch.flatten(x, start_dim=1) x = self.fc1(x) output = self.fc2(x) return output ``` 在训练阶段,使用交叉熵损失函数和随机梯度下降(SGD)优化器。通过`DataLoader`加载数据集,并进行多个epoch的迭代以更新模型参数。 ```python device = torch.device(cuda if torch.cuda.is_available() else cpu) model = SimpleCNN().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(epochs): for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 验证阶段 with torch.no_grad(): total_correct = 0 for val_images, val_labels in val_loader: output_val = model(val_images.to(device)) _, predicted_label = torch.max(output_val.data, dim=1) total_correct += (predicted_label.cpu() == val_labels).sum().item() accuracy = total_correct / len(valData) print(fEpoch {epoch+1}/{epochs}, Validation Accuracy: {accuracy}) ``` 此示例展示了如何从头开始构建一个图像分类任务的全部流程,包括数据集生成、自定义数据类的设计以及CNN模型架构的选择和实现。
  • TensorFlowCNN卫星
    优质
    本研究采用TensorFlow框架搭建卷积神经网络(CNN),对卫星影像进行高效准确的分类处理,旨在提升遥感数据的应用效率和精度。 在本项目中,我们将使用TensorFlow构建一个卷积神经网络(CNN)模型来对卫星图片进行分类,目的是区分机场与湖泊。以下是关键步骤的概述: 一、数据集准备 我们的数据集中包含1400张卫星图片,每类各占700张,分为两类:机场和湖泊。这是一个典型的二分类问题。为了防止过拟合或欠拟合,在训练模型时需要将数据划分为训练集、验证集以及测试集(通常比例为8:1:1),这样可以在训练过程中监控性能,并在最后进行公正的评估。 二、读取数据集 我们需要导入必要的库,包括TensorFlow用于构建和训练模型,NumPy用于数值计算,Matplotlib用于可视化数据路径管理使用Pathlib,而random用来随机化数据。 接下来是构造一个包含所有图片路径的对象并将其打乱。然后根据子目录(例如“airplane” 和 “lake”)来创建分类标签:0代表机场,1代表湖泊。 三、数据预处理 定义`load_pic`函数用于加载和准备图像文件,包括解码二进制数据,调整大小至特定尺寸,并将其归一化到[0, 1]区间。此外还要对图片进行增强操作(如旋转、裁剪等)以增加模型的泛化能力。 创建数据批次:使用TensorFlow的`tf.data.Dataset` API将图像和标签打包成小批量,便于训练。 四、构建CNN模型 利用Keras API在TensorFlow中搭建基础卷积神经网络。这通常包括一系列层如Conv2D, MaxPooling2D, ReLU激活函数等。 设置损失函数(例如交叉熵),优化器(比如Adam)以及评估指标(如准确率)。然后编译整个模型,整合这些组件。 五、训练CNN 使用`model.fit`方法进行实际的模型训练。这一步需要提供数据集和验证集,并设定适当的轮次数和批次大小。 在训练过程中观察损失值与准确性变化情况以调整参数避免过拟合问题。 六、评估及预测 完成训练后,利用测试集来评价模型表现;接着用该模型对新的卫星图片进行分类任务的预测工作。 综上所述,本项目通过TensorFlow搭建了一个基于CNN架构的图像二分类解决方案。从数据准备到预处理再到模型构建和最终的应用部署,每一步都至关重要以确保能够正确学习并泛化新数据中的模式。
  • CNN与识别(Matlab)
    优质
    本项目采用卷积神经网络(CNN)技术,在Matlab平台上实现了高效准确的图像分类和识别系统,适用于多种图像处理任务。 利用深度学习模型CNN对图像进行分类与识别,例如人脸识别、手写字符识别等。
  • PyTorch残差网络
    优质
    本项目采用PyTorch框架实现了图像分类中的残差网络模型,通过深度学习技术提高大规模数据集上的分类准确率。 基于残差网络的训练模型可以达到99%的准确率,在测试集上的表现是86%。
  • PyTorchCNN深度学习代码
    优质
    本项目使用PyTorch框架及卷积神经网络(CNN)技术进行深度学习训练,实现高效准确的图像分类功能。 基于CNN和PyTorch的图像分类代码适用于初学者学习基于深度学习的图像分类。
  • CNNImageRetrieval-PyTorchPyTorchCNN检索
    优质
    CNNImageRetrieval-PyTorch 是一个使用 PyTorch 实现的深度学习项目,专注于利用卷积神经网络进行高效的图像检索。它提供了一个灵活且功能强大的框架,便于研究和开发基于 CNN 的图像相似性搜索技术。 在PyTorch中训练和评估CNN以进行图像检索是一个Python工具箱,用于实现Radenović F.、Tolias G. 和 Chum O. 在TPAMI 2018 年发表的方法的培训和测试:无需人工注释即可对CNN图像进行微调。同时它也实现了在ECCV 2016年Radonvić F., Tolias G., 和Chum O. 发表的文章《从BoW获悉的CNN图像检索:无监督的微调,并附有困难示例》中的方法。 该代码实现如下功能: - 训练(微调)CNN进行图像检索 - 学习CNN图像表示的监督美白 - 在牛津和巴黎数据集上测试CNN图像检索 为了运行此工具箱,你需要以下软件环境: - Python 3 (已使用Python 3.7.0版本在Debian 8.1系统中进行了测试) - PyTorch深度学习框架(通过了PyTorch 1.0.0版的测试) 其余所有资源(包括数据和网络)将由我们的脚本自动下载。
  • PyTorchGoogLeNet——轻松使用
    优质
    本文章介绍了如何利用PyTorch框架来实现GoogLeNet模型进行图像分类任务,并提供了简洁实用的操作指南和代码示例。 GoogLeNet_classification使用了基于Inception模块的深度神经网络模型——GoogLeNet,在PyTorch框架下实现图像分类功能,并且可以直接应用。该模型在2014年的ImageNet竞赛中赢得了冠军,之后经过改进形成了多个版本,包括Inception V2、V3和V4等。 GoogLeNet采用了模块化的结构(即Inception结构),这使得增加或修改网络变得非常方便;在网络的最后部分使用了平均池化代替全连接层,并且即使移除了全连接层,仍然在模型中应用了Dropout技术。
  • PyTorchConvNeXt算法在
    优质
    本研究探讨了利用PyTorch框架实现ConvNeXt算法在图像分类任务中的应用。通过实验验证了该模型的有效性与优越性能,为视觉识别领域提供了新的视角和方法。 ConvNeXt算法在PyTorch框架下实现了图像分类任务。该算法借鉴了Swin Transformer的思想,并在ImageNet-1K数据集上进行训练和评估,从而确立了其核心结构。
  • MatlabCNN代码
    优质
    本项目提供了一套使用Matlab开发的卷积神经网络(CNN)代码,专注于实现高效且准确的图像分类功能。 该项目旨在利用FPGA技术实现一个经过训练的卷积神经网络(CNN)来进行图像分类任务。项目采用CIFAR-10数据集作为训练样本,并借助深度学习中的CNN模型对输入图像进行类别划分。设计包含了六个层次:滑动窗口卷积、ReLU激活函数应用、最大池化操作、将特征图展平为一维向量以供全连接层处理,以及最终的Softmax分类器。 具体而言,在实现过程中使用了若干卷积核/过滤器来从输入图像中提取有用的视觉信息。该方法支持灰度或彩色图像作为输入数据源。项目所用到的主要工具有:Xilinx Vivado v17.4(用于FPGA设计)、Matlab R2018a(辅助参考和结果对比)。编程语言方面,选择了Verilog HDL以完成硬件描述任务。 截至目前为止,已经完成了以下几项工作: - 对于FPGA及其相关资源、Vivado 17.4以及Matlab R2018a的基本操作有了初步掌握。 - 使用Vivado 17.4开发了一些基础的Verilog模块,如矩阵乘法器、通用多路复用器(MUX)、卷积运算单元、ReLU激活函数和最大池化功能等。 - 利用了Matlab R2018a创建了一系列辅助性矩阵操作程序,用于参考目的及结果验证之需。 此外,在初始阶段主要处理灰度图像(通过在Matlab中将彩色图片转换为灰度格式)。接下来的工作重点在于进一步完善上述基础模块,并开始着手构建整个CNN架构。