Advertisement

subgradient_optimization.rar_subgradient_对偶次梯度_拉格朗日松弛

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包提供关于次梯度优化方法在解决带约束最优化问题中的应用,特别是针对拉格朗日松弛技术的相关理论和实践探讨。包含源代码及示例数据。 在最优化问题中,运用拉格朗日松弛方法来解决对偶问题时,可以采用次梯度方法求解拉格朗日乘子。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • subgradient_optimization.rar_subgradient__
    优质
    本资源包提供关于次梯度优化方法在解决带约束最优化问题中的应用,特别是针对拉格朗日松弛技术的相关理论和实践探讨。包含源代码及示例数据。 在最优化问题中,运用拉格朗日松弛方法来解决对偶问题时,可以采用次梯度方法求解拉格朗日乘子。
  • 优质
    拉格朗日松弛法是一种优化问题求解技术,通过引入拉格朗日乘子放松原问题中的某些约束条件,简化复杂模型的求解过程。适用于解决组合优化、网络流等问题。 实现拉格朗日松弛算法可以在较短的时间内完成迭代过程,并且可以使用Matlab软件进行编程实现。
  • 算法.zip - 百家号__法详解_法 MATLAB实现_算法讲解
    优质
    本资料深入解析次梯度算法及其在优化问题中的应用,包括对偶拉格朗日及次梯度法的原理、MATLAB代码实现等内容。适合研究与学习使用。 利用次梯度算法求解基于拉格朗日对偶方法的问题。
  • 问题详析
    优质
    本篇文章详细探讨了拉格朗日对偶问题的基本理论和应用,通过实例分析帮助读者深入理解其核心概念与解题技巧。适合数学及工程专业的学生参考学习。 拉格朗日乘子法是解决优化问题的常用方法,但为什么它又与对偶问题相关联呢?这篇讲义给出了详细的解释。
  • 与凸优化
    优质
    《拉格朗日对偶与凸优化》一书深入探讨了最优化理论中的核心概念,特别聚焦于拉格朗日对偶性及其在解决凸优化问题中的应用。适合研究和学习运筹学、机器学习等领域的读者参考。 本段落主要介绍拉格朗日对偶及凸优化中的拉格朗日对偶函数。内容涵盖拉格朗日对偶问题、强对偶性以及Slater’s条件,并探讨了KKT最优化条件与敏感度分析的相关知识。
  • 一种实时无等待HFS调算法(2006年)
    优质
    本文提出了一种基于拉格朗日松弛方法的新型HFS调度算法,实现资源分配与任务调度的同时优化,确保系统运行效率和响应速度。该算法能够有效解决实时无等待调度问题,在2006年取得了重要突破。 本段落研究了实时无等待HFS调度问题,并建立了一个整数规划模型,提出运用拉格朗日松弛算法进行求解。该方法通常采用次梯度法来更新拉格朗日乘子,但随着迭代次数的增加,其收敛速度会逐渐减慢。因此,我们设计了一种改进的束方法(bundle method),将之前的次梯度累积到束中,以获得更优的乘子更新方向。仿真实验表明,与传统的次梯度法相比,所提出的束方法不仅在较少迭代次数内实现了更快的收敛速度,并且优化性能也得到了显著提升,在处理大规模问题时表现尤为突出。
  • 基于法的机组组合及其MATLAB实现
    优质
    本研究探讨了利用拉格朗日松弛法解决电力系统中的机组组合问题,并展示了该方法在MATLAB环境下的具体实现过程。 用拉格朗日松弛法编写的MATLAB电力系统机组组合程序。
  • 乘子法在SVM问题中的推导
    优质
    本文章详细介绍了如何利用拉格朗日乘子法解决支持向量机(SVM)的对偶优化问题,深入浅出地讲解了从原始形式到对偶形式的转换过程。 这段文字描述了手工推导支持向量机(SVM)的过程,并详细介绍了拉格朗日乘子的对偶问题的推导过程。
  • 机组组合中的法及其实现代码(MATLAB版).zip
    优质
    本资源提供了一种在电力系统优化中广泛应用的方法——拉格朗日松弛法的应用实例及其MATLAB实现代码,旨在解决复杂的机组组合问题。 拉格朗日松弛法在机组组合中的应用以及相关的算法介绍和Matlab源码分享。