Advertisement

利用激光雷达进行障碍物检测和跟踪.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文探讨了如何运用激光雷达技术实现对移动物体的有效检测与精确跟踪,为自动驾驶及机器人导航提供关键技术支持。 《基于激光雷达的障碍物检测与跟踪》是西南交通大学曾文浩同学的工程硕士学位论文,主要探讨了在无人驾驶系统中利用激光雷达进行障碍物检测与跟踪的技术问题。该研究对于提升无人车辆的安全行驶能力具有重要意义,因为环境感知技术的准确性和实时性直接决定了无人驾驶车辆的行驶安全。 激光雷达(Light Detection and Ranging, LiDAR)是一种关键传感器,能够获取周围环境的三维信息,为无人驾驶提供精确的数据支持。与相机相比,激光雷达不受光照条件影响,并且比毫米波雷达具有更高的精度和分辨率,特别适用于主动防撞系统。然而,处理来自激光雷达的大数据量点云时需要解决算法实时性不足及适用性不强的问题。 论文的主要贡献包括: 1. 设计了用于两台激光雷达之间的坐标系标定的算法:利用NDT(Normal Distributions Transform)匹配方法计算旋转和平移变换矩阵,实现坐标一致性。 2. 提出了一个高效的障碍物检测方案:通过极坐标栅格法去除地面点数据以减少无关信息。改进DBSCAN算法并提出自适应搜索参数和“代表点”生长法结合最小包裹矩形来拟合三维边框进行特征提取。 3. 开发了激光雷达目标跟踪技术:针对JPDAF(Joint Probabilistic Data Association Filter)算法的局限性,简化确认矩阵减少小概率事件的发生,提高效率。同时引入自适应滤波器对环境中的障碍物进行持续追踪,并设计跟踪管理器维护更新运动信息。 4. 在硬件和软件方面进行了配置与开发:使用C++编写代码,在实际城区道路及园区环境中测试了所提出的障碍物检测与跟踪算法的性能表现。 该论文的研究显示,通过优化相关技术和策略可以显著提高激光雷达在无人驾驶系统中的应用效果。这不仅增强了系统的实时性和准确性,也为推动无人驾驶技术的实际落地提供了理论基础和实践经验指导。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文探讨了如何运用激光雷达技术实现对移动物体的有效检测与精确跟踪,为自动驾驶及机器人导航提供关键技术支持。 《基于激光雷达的障碍物检测与跟踪》是西南交通大学曾文浩同学的工程硕士学位论文,主要探讨了在无人驾驶系统中利用激光雷达进行障碍物检测与跟踪的技术问题。该研究对于提升无人车辆的安全行驶能力具有重要意义,因为环境感知技术的准确性和实时性直接决定了无人驾驶车辆的行驶安全。 激光雷达(Light Detection and Ranging, LiDAR)是一种关键传感器,能够获取周围环境的三维信息,为无人驾驶提供精确的数据支持。与相机相比,激光雷达不受光照条件影响,并且比毫米波雷达具有更高的精度和分辨率,特别适用于主动防撞系统。然而,处理来自激光雷达的大数据量点云时需要解决算法实时性不足及适用性不强的问题。 论文的主要贡献包括: 1. 设计了用于两台激光雷达之间的坐标系标定的算法:利用NDT(Normal Distributions Transform)匹配方法计算旋转和平移变换矩阵,实现坐标一致性。 2. 提出了一个高效的障碍物检测方案:通过极坐标栅格法去除地面点数据以减少无关信息。改进DBSCAN算法并提出自适应搜索参数和“代表点”生长法结合最小包裹矩形来拟合三维边框进行特征提取。 3. 开发了激光雷达目标跟踪技术:针对JPDAF(Joint Probabilistic Data Association Filter)算法的局限性,简化确认矩阵减少小概率事件的发生,提高效率。同时引入自适应滤波器对环境中的障碍物进行持续追踪,并设计跟踪管理器维护更新运动信息。 4. 在硬件和软件方面进行了配置与开发:使用C++编写代码,在实际城区道路及园区环境中测试了所提出的障碍物检测与跟踪算法的性能表现。 该论文的研究显示,通过优化相关技术和策略可以显著提高激光雷达在无人驾驶系统中的应用效果。这不仅增强了系统的实时性和准确性,也为推动无人驾驶技术的实际落地提供了理论基础和实践经验指导。
  • MATLAB点云分割及的方法.rar
    优质
    本资源提供了一种基于MATLAB的激光雷达点云处理技术,重点介绍了点云分割与障碍物检测方法,适用于自动驾驶和机器人导航等领域研究。 基于MATLAB实现的激光雷达点云分割和障碍物检测方法能够有效处理来自激光雷达传感器的数据,通过算法将复杂的三维空间中的物体进行精确划分,并识别出潜在的障碍物,为自动驾驶等应用场景提供关键信息支持。这种方法利用了MATLAB强大的数据处理能力和丰富的工具箱资源,实现了高效、准确的点云分析与目标检测功能。
  • 点云中的.rar
    优质
    本研究聚焦于利用激光雷达技术获取的点云数据进行障碍物识别与分类,旨在提高自动驾驶车辆的安全性和导航精度。 激光雷达点云障碍物检测技术能够精确识别环境中的障碍物,对于自动驾驶、机器人导航等领域具有重要意义。通过分析激光雷达采集到的三维点云数据,可以有效提取出道路或工作区域内的静态与动态障碍物信息,从而为系统决策提供关键支持。
  • 数据
    优质
    本研究探讨了如何运用激光雷达技术收集的数据来识别和跟踪行人,旨在提升自动驾驶车辆及智能安防系统的安全性与效率。 在自动驾驶技术的众多任务中,行人识别是一项关键的技术需求。由于基于图像数据的行人检测算法无法提供行人的深度信息,因此开发了使用激光雷达数据进行行人检测的新方法。这种方法结合了传统的运动目标识别技术和最新的基于深度学习的点云处理技术,能够在不依赖于视觉图像的情况下有效感知和定位行人,并获取其精确的三维位置坐标,从而帮助自动驾驶系统做出更合理的决策。 在KITTI三维物体检测基准测试的数据集上对该算法进行了性能评估。结果显示,在中等难度条件下达到了33.37%的平均精度,超过了其他基于激光雷达的方法,证明了该方法的有效性和优势。
  • RGBD相机
    优质
    本研究采用RGBD相机技术,通过深度信息和彩色图像结合的方法,实现对环境中的障碍物进行高效、准确的检测与识别。 检测障碍物是机器人自主移动的基础。为了提高障碍物识别的效率和准确率,本段落提出了一种基于RGBD摄像头的障碍物检测方法,主要分为两个部分:一是对不规则形状障碍物进行轮廓确定;二是计算出其长度、宽度等信息。 具体来说,在处理不同形状与大小的障碍物体时,该系统会利用RGBD摄像头实时采集图像并传输至数据处理中心。通过改良帧差法和最小矩形匹配算法结合图像处理技术来识别目标物体,并且运用深度图及其阈值以获取到其相对位置信息;随后采用坐标转换方法进一步计算出障碍物的高度与宽度。 实验结果显示,在不同视角下检测同一物体时的误差均不超过9%。这表明改进后的帧差法能够有效提高轮廓确定精度,而基于变换坐标的算法则在速度上具有明显优势。因此可以认为该种基于RGBD摄像头设计的障碍物检测方案具备良好的应用前景和实用价值。
  • STM32F407高度定位(超声波)与).rar
    优质
    本资源为STM32F407微控制器应用案例,涵盖高精度定位技术与避障功能设计。通过集成超声波传感器和激光雷达,实现复杂环境下的精准定位及障碍物识别。 采用STM32F407串口1接收TFMINI_PLUS数据并解码,串口2接收超声波GY_US42数据并解码,并将两者数据通过串口3发送到其他开发板。在自测板上测试成功,如果要在正点原子开发板使用,则只需修改usart.c文件中对应的引脚配置。
  • 基于三维的实时与可通区域
    优质
    本研究利用三维激光雷达技术开发了一种高效的实时障碍物及可通行区域检测系统,适用于自主导航领域。 针对交通环境中障碍物及可通行区域检测的问题,本段落提出了一种改进的欧氏聚类算法进行实时障碍物检测,并设计了一种相邻点云间距算法以提取道路的可通行区域。首先对点云数据进行了预处理,然后利用地面坡度分离算法区分了地面和非地面点云;接着根据不同的聚类距离阈值对非地面点云进行障碍物聚类检测,并用长方体框标记不同物体。通过将每个激光束固有的相邻点云间距与实际的两点间距离对比,并结合相邻点的角度差以及点云分类,实现了可通行区域的有效提取;最后融合了障碍物检测和可通行区域提取的结果,对通过性进行了合并检测。 经过多路况实车实验验证,该算法能够准确地识别出障碍物及道路的可通行区域。其平均检测精度为94.13%,耗时仅为69毫秒,完全满足智能车辆实时性的需求。
  • MATLAB车道线、车辆
    优质
    本项目运用MATLAB技术实现智能驾驶辅助系统中的关键功能,包括车道线识别、车辆及障碍物检测。通过图像处理与机器学习算法,提高道路行驶安全性。 随着生活水平的提升与科技进步,智能驾驶技术逐渐成为研究热点。先进驾驶辅助系统(ADAS)是这一领域的一个重要分支,通过使用传感器感知周围环境来协助驾驶员操作或实现车辆自动化控制,从而提高行车安全性。车道线检测作为ADAS的关键部分,能帮助确定车辆在当前车道的位置,并为车道偏离预警提供依据。 然而,在实际应用中由于存在视角遮挡、道路阴影及裂痕等问题以及邻近车辆压线干扰等情况,使得实时准确地检测出车道线变得极具挑战性。目前主要采用车内摄像头并运用图像处理技术进行视频流分析来实现这一目标,但该方法在复杂多变的行车环境中容易出现误检或漏检现象。 本项目旨在通过构建单目相机模型、生成鸟瞰视图、转换为灰度图像以及二值化和感兴趣区域(ROI)检测等步骤,以期达到更高效准确地识别车道线的目的。
  • 深度相机.rar
    优质
    本项目旨在开发一种基于深度相机技术的高效障碍物检测系统,通过实时捕捉和分析环境深度信息,实现对周围障碍物的精准识别与定位,提升智能设备在复杂环境中的自主导航能力。 基于深度相机的障碍物检测技术能够有效地识别环境中的障碍物,为机器人导航、自动驾驶等领域提供重要的感知支持。通过分析深度图像数据,系统可以实时捕捉并处理周围物体的位置信息,从而帮助设备避开潜在的风险区域,确保操作的安全性和效率。 这段话重新组织了原文的核心内容,并且避免了重复表述和不必要的冗余。