Advertisement

关于位置指纹在移动Wi-Fi室内定位中的应用研究.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了位置指纹技术在移动Wi-Fi室内定位系统中的应用效果,分析其优势与局限,并提出改进方案以提升定位精度和稳定性。 使用射线追踪、卡尔曼滤波、K-means、KNN等算法进行室内定位的研究包括主函数、指纹库生成、射线追踪、在线匹配等内容,并提供了详细的Matlab代码,可以直接生成位置指纹数据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Wi-Fi.zip
    优质
    本研究探讨了位置指纹技术在移动Wi-Fi室内定位系统中的应用效果,分析其优势与局限,并提出改进方案以提升定位精度和稳定性。 使用射线追踪、卡尔曼滤波、K-means、KNN等算法进行室内定位的研究包括主函数、指纹库生成、射线追踪、在线匹配等内容,并提供了详细的Matlab代码,可以直接生成位置指纹数据。
  • Wi-Fi系统
    优质
    本系统采用Wi-Fi信号进行室内精准定位,通过接收器捕捉无线电信号强度信息来确定目标位置,广泛应用于商场导航、智能建筑等领域。 随着移动互联网的快速发展以及智能终端设备的普及,人们对基于位置服务特别是室内定位的需求日益增加。通过研究无线WiFi信号的特点,并利用Android智能手机结合计算机网络编程及ArcGIS MAP等技术,设计并实现了一套采用位置指纹算法进行室内定位的系统。实验结果显示,在某栋实验楼的一个楼层中对该系统的测试表明,该系统具有使用灵活、界面友好且具备良好定位精度的优点。
  • PDR反馈下Wi-Fi算法论文.pdf
    优质
    本文探讨了在概率密度函数(PDR)反馈机制下的Wi-Fi室内定位技术,并提出了一种改进的定位算法以提高室内定位精度和稳定性。 Wi-Fi指纹定位易受周围环境的影响,稳定性较差;行人航迹推算(PDR)定位需要待定位目标的初始位置,并且容易产生累计误差。针对这些问题,提出了一种基于PDR反馈的Wi-Fi室内定位算法。该算法主要分为三个阶段:第一阶段是利用相关向量回归(RVR)进行初始位置定位;第二阶段采用PDR技术进行实时跟踪并提供反馈信息;第三阶段应用K近邻法(KNN)实现指纹定位。实验结果显示,提出的算法在提高定位精度和稳定性方面表现出明显优势,并且相较于传统Wi-Fi定位方法减少了时间复杂度,具有更好的实时性。
  • 系统论文:结合RSSI与惯性技术.pdf
    优质
    本文探讨了一种基于RSSI位置指纹和惯性传感器数据融合的室内定位系统,旨在提高复杂环境下的定位精度与可靠性。通过算法优化,实现了对移动设备的精准追踪。 在当今快速发展的移动互联网时代,智能终端的广泛普及带来了基于位置服务(Location Based Service, LBS)的需求增长,其中室内定位系统(Indoor Localization System)作为能够提供室内环境下位置信息的服务受到了广泛关注。尽管全球定位系统(GPS)在室外环境中功能强大且高精度定位能力得到充分展现,但在室内环境中由于信号无法穿透墙壁等障碍物,因此GPS无法有效工作。这种局限性使得精确的室内定位技术成为无线移动应用中不可或缺的部分,并引起了学术界和产业界的高度重视。 当前主要采用的技术包括红外线(Infrared, IR)、蓝牙(Bluetooth)、超宽带(Ultra-Wideband, UWB)、无线局域网(Wireless Local Area Network, WLAN)及射频识别(Radio Frequency Identification, RFID)。这些技术通常结合三角测量、位置指纹等定位方法使用,如k近邻法(k-nearest-neighbor,kNN)和概率方法(Probabilistic Methods)。 在室内环境中,多边形定位通过计算目标到多个参考点的距离进行估计。角度法则利用相对角度确定目标位置,这些技术通常依赖于信号强度(Received Signal Strength, RSS)、到达时间(Time Of Arrival, TOA)或到达时间差(Time Difference of Arrival,TDOA)来间接测量距离。 然而,三角测量方法对基站设备的时间同步要求很高,在室内环境中由于发射器和接收器之间缺乏直接视线通道,多径效应会导致电波传播不稳定,并影响定位精度。为提高室内定位系统的精确度,本段落提出了一种结合RSSI位置指纹技术和惯性技术的混合系统,通过动态活动区域聚类进一步提升位置指纹法定位精度。 实验结果表明,在没有GPS信号的情况下使用无线传感器网络(Wireless Sensor Networks, WSN)进行精准定位是完全可行的。相比单独采用RSSI位置指纹技术,该系统的定位准确度提高了35%以上。随着惯性传感器、无线通信芯片及体域网设备的普及,这种混合系统在个人室内定位应用中展现出巨大潜力。 论文作者杨帆和陆佳亮来自上海交通大学计算机科学与技术系,他们的研究证明了结合RSSI位置指纹技术和惯性技术能够显著提高室内环境下的定位精度。这为未来室内定位技术的发展开辟新的路径,并提出了一些挑战如如何优化聚类算法以适应不同动态变化的室内环境。 论文详细探讨无线室内定位系统的设计和实现过程,并提供了实际应用中的实验数据,分析了混合方法相比于单独使用某一种技术的优势。此外还讨论当前面临的挑战及未来研究方向,例如提高系统的稳定性和准确性等。作者的研究为相关领域的发展做出了重要贡献并提供宝贵经验与参考数据。
  • 差分改正RSSI
    优质
    本研究探讨了利用差分改正技术优化RSSI(接收信号强度指示)指纹库的方法,以提高室内定位系统的准确性与稳定性。 在基于RSSI指纹库的室内定位过程中,由于受到复杂环境的影响,实时采集到的指纹数据可能会出现误差。如果直接使用这些有误差的数据进行定位,则会降低定位精度。考虑到不同位置接收的RSSI信号值之间存在一定的相关性,采用差分改正方法可以提高定位准确性。 该算法的核心在于计算和应用误差修正数,这直接影响了最终的定位精确度。参考点的数量与位置的不同选择会影响误差修正的结果。泰森多边形能够构建最大化角度的整体网络,并在空间信息领域得到广泛应用。因此,在本研究中利用泰森多边形的空间邻接特性来选取用于计算误差修正值的参考点,设计了坐标和RSSI向量元素的误差校正方法,以实现共同误差的应用。 最终,在Eclipse开发环境中结合PostgreSQL PostGIS空间数据库与Mybatis映射工具建立了实验原型系统,并对融合差分改正算法进行了测试。结果显示,相较于未进行差分修正的情况,定位准确率有所提高。
  • 超宽带技术TDOA三维
    优质
    本研究聚焦于超宽带技术在基于到达时间差(TDOA)的室内三维定位系统中的创新应用,旨在提高定位精度与稳定性。通过深入分析与实验验证,探索该技术在未来智能环境中的广阔前景与发展潜力。 在室内环境下对目标进行无线定位时,由于障碍物的遮挡而造成的非视距(NLOS)误差严重影响了定位精度。为解决这一问题,我们利用超宽带(UWB)技术测量得到的到达时间差(TDOA)数据进行了残差分析,并鉴别出其中是否存在NLOS误差。针对存在NLOS误差的情况,提出了一种结合Fang算法和泰勒级数展开法的联合定位策略:首先使用Fang算法的结果作为泰勒级数展开法的初始值,然后通过这两种方法相结合来计算NLOS情况下的目标位置;而对于视距(LOS)情况下测得的数据,则采用单一的Fang算法进行处理。 仿真对比实验表明,这种结合了Fang和Taylor级数的方法显著提高了室内NLOS环境下目标定位的精度。此外,在多传感器配置下,如从4个增加到6个或8个传感器时,该方法能够进一步提升定位准确性,并且在传感器数量达到6个时达到了性能与成本的最佳平衡。 总结来说,本段落提出了一种结合Fang算法和泰勒级数展开法的联合定位策略来应对室内无线定位中的NLOS问题。通过仿真验证了这种新型算法的有效性,在提高NLOS环境下目标定位精度方面表现尤为突出,并且在多传感器配置下性能更为优越,这为智能家居、物联网设备以及应急救援等领域提供了有效的技术支撑和解决方案。
  • 算法(Matlab源代码)
    优质
    本项目提供了一种基于位置指纹的室内定位算法及其Matlab实现代码。通过收集和分析特定区域内的无线信号特征,该算法能够准确地确定用户在室内的位置。 NN、KNN、WKNN 和贝叶斯算法可以用于毕业设计,并且这些方法的代码是可以运行的。
  • CSI数据集参考
    优质
    本数据集专注于室内环境下的CSI(信道状态信息)指纹定位技术研究,为无线通信领域的精准位置服务提供关键参考。 随着WiFi技术的进步,IEEE 802.11n系列通信协议及其后续的无线局域网协议采用了多输入多输出(Multiple-Input Multiple-Output, MIMO)和正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)等先进技术。这使得在物理层可以估计WiFi收发设备之间的信道特征,并将这些信息以信道状态信息(Channel Status Information,CSI)的形式保存下来。 实验中使用了一个无线路由器作为发射机(配备2根天线),一台安装了Intel WiFi Link 5300无线网卡和Ubuntu操作系统的台式电脑作为接收机(配备了3根天线)。通过修改网络接口控制器的驱动程序来读取每个数据包在硬件上以CSI形式记录的信息,并生成包含CSI信息的dat文件。这些dat文件是以二进制格式保存,最后需要使用MATLAB或Python等编程语言来解析这些dat文件并提取出CSI信息。 实验过程中,在每个位置点收集了1500个数据包的数据。
  • Matlab代码-识别:fingerprints indoor positioning
    优质
    本项目提供了一套基于MATLAB的室内位置识别系统,采用指纹技术实现高精度定位。通过分析无线信号特征,为室内导航和自动化应用提供了可靠的位置数据支持。 室内定位技术已取得显著进展,并且由于近年来智能手机及其他无线设备的广泛使用,该领域受到了越来越多的关注。基于WiFi的指纹定位是众多方案之一,它包括离线阶段和在线阶段:在离线阶段系统会从目标区域中的参考位置构建全面测量数据库;然后,在线阶段中利用这些数据进行实时位置预测。 大多数现有室内指纹定位系统因其实用性和低硬件需求而将WiFi信号强度值(RSS)作为主要的识别特征。我们的研究分为两个部分,即楼层检测和位置回归,并采用WKNN方法在Jupyter笔记本中的Matlab环境及DNN中实现;同时采用了整体装袋技术以达到100%的楼层检测准确率以及堆叠策略来提高精度。 此外,我们还对比了长期数据与短期数据的结果差异。特别地,在基于CNN处理长时间序列方面提出了一种新方法,并使用来自坦佩雷理工大学和Jaume I大学同一研究团队的数据集进行了测试。这些数据库均以全包模式收集的Wi-Fi信号记录构成(涵盖不同设备及用户,且无特定配置要求)。