Advertisement

关于低电压低静态电流LDO电路的设计(二)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文为系列文章第二部分,专注于低电压、低静态电流LDO电路设计的技术细节与优化策略,探讨其在便携式电子设备中的应用。 随着过去几十年掌上智能终端的快速发展,低压差线性稳压器(Low Drop-out Regulator, LDO)因其低功耗、高电源抑制比、体积小以及电路设计简单等优点,在众多领域得到了广泛应用。LDO大多在轻负载条件下工作,因此其静态电流消耗对电池寿命有着重要影响。 现代电子设备中,尤其是便携式设备里,低电压和低静态电流的LDO是关键组件之一。它们直接影响到电池的续航能力。LDO的主要任务是在输入端提供较高的电压,并将其转换为稳定的较低输出电压;同时保持高电源抑制比(PSRR),这意味着它能有效地过滤掉电源噪声,确保负载获得纯净、稳定的工作电压。由于LDO通常在低负载条件下工作,因此其静态电流的消耗至关重要,因为它直接影响到设备待机时的功耗和电池寿命。 本段落介绍了一种精简结构设计的低电压低静态电流LDO电路。该电路的核心是一个A类共源级输出级,包括PMOS功率管M1、三极管Q1和Q2以及电阻R1、R2、R3,Resr和一个用于动态响应优化及环路稳定性的补偿电容C1。通过调整M1的宽长比来提升驱动大负载电流的能力,并减少寄生电容以提高能量转换效率。 带隙基准电路由三极管Q1、Q2和相关电阻构成,精心设计了Q2射极面积与Q1及Q3的比例关系,确保基准电压的准确性和稳定性。三极管Q3配合M6形成共集电级配置,提供高增益以增强环路稳定性能。缓冲阶段采用了PMOS负载连接二极管结构的共源级设计,这种布局既保证了低输出阻抗又能实现180°相位偏移,从而产生负反馈并确保系统稳定性。 为了在轻载条件下维持适当的偏置电流,M3辅助支持M4以防止其栅源电压过低影响Q3的工作状态和增益能力。通过结合三极管Q4与PMOS M7构建的偏置电路使Q1和Q3集电极电流相等,并利用M5、M8及M9组成的启动电路确保LDO在输入电压初期阶段能正确运行。 该设计采用CSMC 0.5 μm双阱CMOS工艺进行仿真验证,能够满足不同工艺条件下驱动30mA负载电流并保持1.14V稳定输出的需求。通过补偿电容C1外接串联电阻的方法引入了左半平面零点以增加环路相位裕度,并确保系统稳定性。仿真实验表明,在负载电流从0到30mA快速变化时,输出电压的最大波动仅为9mV,展示了其优异的动态响应性能。 这种设计通过整合带隙基准源和误差放大器实现了低静态电流消耗以及良好的瞬态响应特性,对于延长电池寿命及优化便携式设备能源效率具有重要意义。适用于对功耗敏感的应用场景如物联网设备、穿戴装置和移动通信装备等。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LDO
    优质
    本文为系列文章第二部分,专注于低电压、低静态电流LDO电路设计的技术细节与优化策略,探讨其在便携式电子设备中的应用。 随着过去几十年掌上智能终端的快速发展,低压差线性稳压器(Low Drop-out Regulator, LDO)因其低功耗、高电源抑制比、体积小以及电路设计简单等优点,在众多领域得到了广泛应用。LDO大多在轻负载条件下工作,因此其静态电流消耗对电池寿命有着重要影响。 现代电子设备中,尤其是便携式设备里,低电压和低静态电流的LDO是关键组件之一。它们直接影响到电池的续航能力。LDO的主要任务是在输入端提供较高的电压,并将其转换为稳定的较低输出电压;同时保持高电源抑制比(PSRR),这意味着它能有效地过滤掉电源噪声,确保负载获得纯净、稳定的工作电压。由于LDO通常在低负载条件下工作,因此其静态电流的消耗至关重要,因为它直接影响到设备待机时的功耗和电池寿命。 本段落介绍了一种精简结构设计的低电压低静态电流LDO电路。该电路的核心是一个A类共源级输出级,包括PMOS功率管M1、三极管Q1和Q2以及电阻R1、R2、R3,Resr和一个用于动态响应优化及环路稳定性的补偿电容C1。通过调整M1的宽长比来提升驱动大负载电流的能力,并减少寄生电容以提高能量转换效率。 带隙基准电路由三极管Q1、Q2和相关电阻构成,精心设计了Q2射极面积与Q1及Q3的比例关系,确保基准电压的准确性和稳定性。三极管Q3配合M6形成共集电级配置,提供高增益以增强环路稳定性能。缓冲阶段采用了PMOS负载连接二极管结构的共源级设计,这种布局既保证了低输出阻抗又能实现180°相位偏移,从而产生负反馈并确保系统稳定性。 为了在轻载条件下维持适当的偏置电流,M3辅助支持M4以防止其栅源电压过低影响Q3的工作状态和增益能力。通过结合三极管Q4与PMOS M7构建的偏置电路使Q1和Q3集电极电流相等,并利用M5、M8及M9组成的启动电路确保LDO在输入电压初期阶段能正确运行。 该设计采用CSMC 0.5 μm双阱CMOS工艺进行仿真验证,能够满足不同工艺条件下驱动30mA负载电流并保持1.14V稳定输出的需求。通过补偿电容C1外接串联电阻的方法引入了左半平面零点以增加环路相位裕度,并确保系统稳定性。仿真实验表明,在负载电流从0到30mA快速变化时,输出电压的最大波动仅为9mV,展示了其优异的动态响应性能。 这种设计通过整合带隙基准源和误差放大器实现了低静态电流消耗以及良好的瞬态响应特性,对于延长电池寿命及优化便携式设备能源效率具有重要意义。适用于对功耗敏感的应用场景如物联网设备、穿戴装置和移动通信装备等。
  • LDO(一)
    优质
    本文为《低压低静态电流LDO电路设计》系列的第一部分,主要介绍LDO的基本概念、工作原理及其在现代电子设备中的应用,并探讨了低功耗需求的重要性。 随着掌上智能终端的快速发展,低电压低静态电流线性稳压器(Low Drop-out Regulator, LDO)已成为关键电源管理组件之一。LDO因其具有低功耗、高电源抑制比、体积小巧以及设计简洁等特性,在各种移动设备中广泛应用。尤其是对于那些依赖电池供电的设备而言,LDO在低负载条件下的静态电流消耗直接影响着电池的使用寿命。因此,降低静态电流以延长电池寿命是LDO设计的重要目标。 为了实现这一目标,并同时解决可能由此引发的输出电压不稳定性和大的暂态变化问题,一种创新的设计方案被提出:即集成带隙基准电压源和误差放大器的功能,从而减少电路中的静态电流并控制输出电压的瞬态响应。传统的LDO通常采用分立的带隙基准电压源和误差放大器结构,而新的设计则将两者合并在一起,使得静态电流降低至原来的一半左右。尽管这种简化的设计无法调节输出电压,并且需要使用NPN晶体管,在双阱CMOS工艺中通过增加一道掩膜工艺可以解决这些问题,同时成本的增加并不显著。 带隙基准电压源是实现恒压基准的关键。它利用了三极管基射级电压的负温度系数和热力学电压的正温度系数,两者叠加生成一个在室温下具有零温度系数的稳定电压。在简化结构中,晶体管Q3与电阻R2共同定义带隙基准电压;通过PTAT(Proportional to Absolute Temperature)电流与晶体管Q1进行镜像复制以确保两者的基射级电压相等,并且调整电阻R2和R3可以控制三极管的集电极电流,从而实现稳定的基准电压。 LDO的动态行为主要由其环路增益和相位裕度决定。简化结构中的LDO有三个低频极点分别位于增益级、缓冲级以及输出节点处;为了优化暂态特性,通常会在系统中引入一个左半平面零点以补偿系统的相位延迟。这可以通过在输出端串联电阻resr与补偿电容CL来实现。晶体管Q3的集电极电流作为PTAT电流使增益级的输出阻抗相对稳定,并且缓冲级输入电容决定了负载电容,从而确保系统的主要极点p3的稳定性;通过精确匹配极点p1和零点z1可以保持环路稳定性,以维持60°相位裕度。 这种低电压低静态电流LDO的设计创新在于集成带隙基准电压源与误差放大器功能的同时减少电路中的静态电流,并借助精细频率分析及补偿策略确保输出电压的稳定。此设计适用于现代低电压环境下的SoC系统中,有助于提高电池寿命并优化整体性能。
  • LDO差线性稳器核心.pdf
    优质
    本PDF文档深入探讨了LDO低压差线性稳压器的核心电路设计原理与实践应用,涵盖设计挑战、优化策略及性能分析等内容。 本段落介绍了一种LDO低压差线性稳压器的设计,该设计在3V至5V的电压范围内工作,并输出2.5V的稳定电压。它可以驱动最小为2.5Ω的电阻,并能提供高达1A的最大负载电流。核心电路包括基准电压源模块、误差放大器模块、反馈模块和PMOS调整管四个部分。
  • 一种极功耗LDO
    优质
    本设计提出了一种极低静态功耗的低压差线性稳压器(LDO),旨在提高便携式电子设备的能源效率。通过优化电路结构和采用新型器件,显著降低了待机状态下的能耗,同时确保了高精度与快速响应特性,适用于各种电池供电装置。 本段落介绍了一种采用0.35 μm CMOS工艺制造的低压差(LDO)电路。该电路使用亚阈值区工作的跨导放大器,在超低静态电流下工作,从而实现了超低功耗和高效率性能。整个电路面积约为0.8 mm2,典型工作状态下总的静态电流为约500 nA,最大负载电流可达150 mA。输入电压范围是3.3 V至5 V,输出电压设定为3 V。
  • matlab直网___配_配网_untitled1.mdl.rar
    优质
    这是一个关于MATLAB仿真模型的资源文件,专注于研究和设计低压直流配电网络。该模型名为untitled1.mdl,以RAR格式压缩提供,适用于学术研究和技术开发。 untitled1.mdl.rar_matlab直流电网_低压_低压直流_配电_配电网涉及的是使用MATLAB进行低压直流(Low Voltage Direct Current, LVDC)配电网的建模与仿真研究。MATLAB是一种强大的计算环境,常用于工程、科学和数学领域的建模、分析和可视化,而直流电网在现代电力系统中越来越受到关注,特别是在分布式能源系统和微电网中。 基于低压直流配电网的仿真,该压缩包中的内容可能包含一个MATLAB模型,模拟低压直流配电网在实际工厂环境中的运行情况。低压直流系统在工业领域逐渐取代传统的交流配电系统,因其能提供更高效、灵活和安全的电力供应,特别适合于能源管理、负载匹配和电池储能等应用场景。 在低压直流配电网中,关键知识点包括: 1. **直流电网的优势**:直流电网可以避免交流电网中的功率因数校正问题,减少谐波影响,并提高能量转换效率。此外,它能够更好地集成光伏、风能等可再生能源,以及直流负载如LED照明和电动汽车充电站。 2. **MATLAB仿真工具箱**:MATLAB提供了电力系统工具箱(Power System Toolbox)和Simulink来构建并模拟电力系统的动态行为,在此案例中这些工具可能用于模拟LVDC配电网的电压控制、功率流动及保护机制等特性。 3. **模型组件**:一个完整的MATLAB直流电网模型通常包括发电机、变换器(如电压源逆变器VSI)、断路器、母线和负载。每个元件都有特定的控制策略,例如PWM控制或平均值模型。 4. **控制策略**:在LVDC系统中,电压与电流调控至关重要。常见的调控方式有恒压恒流(CVCC)及功率因数调节(PF control),这些可能体现在untitled1.mdl.autosave文件内。 5. **工厂应用**:低压直流配电网能够实现高效的能源分配,在工业环境中支持设备的即插即用,简化电气布线,并且能更好地适应自动化生产线的需求。 6. **安全与保护措施**:LVDC系统需要考虑过电压、短路等故障情况下的快速响应机制和继电器配置以确保系统的安全性。 通过分析这个模型可以学习如何在MATLAB环境下设计并评估低压直流配电网,同时了解实际工厂环境中优化及实施此类系统的策略。这对于理解和把握现代电力系统的发展趋势,尤其是绿色能源与直流技术的结合方面具有重要意义。
  • 源在源技术中探讨
    优质
    本文深入探讨了低压大电流开关电源的设计理念与实现方法,分析其在现代电子设备中应用的重要性和挑战,并提出创新性解决方案。 为了实现更低功耗下的更高性能与速度需求,电源电压不断降低且瞬态性能指标不断提升,这对开关电源提出了更高的要求。传统的电路拓扑及整流方式已无法满足当前的需求,因此人们开始探索新的电路结构以适应集成电路芯片的发展趋势。由于输出电压较低,同步整流成为低压大电流电源的必然选择。考虑到产品的复杂性和可靠性问题,自驱动式同步整流技术被广泛采用。与之相匹配的主要有三种拓扑类型:有源箝位正激变换器、互补控制半桥变换器以及两级结构变换器。相比之下,前两种电路所使用的元器件较少,更具吸引力,并且这两种变换器更容易实现软开关工作模式。
  • 控制通滤波
    优质
    本项目设计了一种基于低压环境下高效的低通滤波电路,旨在优化信号传输过程中的噪声过滤效果,适用于各种电子设备。 ### 电压控制低通滤波电路详解 #### 一、基础知识概述 在电子技术领域,滤波器是一种常用的电路组件,用于对特定频率范围内的信号进行处理,从而达到选择性地通过或抑制某些频率成分的目的。低通滤波器允许低于特定截止频率的信号通过,而阻止高于该频率的信号通过。电压控制低通滤波器则是一种特殊的低通滤波器,其特性(尤其是截止频率)可以通过外部电压信号来控制。 #### 二、电路结构分析 本段落将详细介绍一种由VCA610和运放OPA680构成的电压控制低通滤波电路。此电路设计的核心在于利用VCA610作为可变增益元件,并通过外部控制电压Vc调节其增益,从而实现对滤波器截止频率的动态控制。 1. **VCA610**: - VCA610是一种电压控制放大器,其增益可以由外部电压Vc控制。 - 在本电路中,VCA610作为可变增益元件被放置在低通滤波电路中。它的增益G可以根据控制电压Vc进行调整。 - 具体来说,增益G与控制电压Vc之间的关系为:\( G = 10^{-1.925(VC+1)} \)。 2. **OPA680运放**: - OPA680是一种高性能运算放大器,用于构建滤波器电路中的反馈回路。 - VCA610的输出通过电阻R2反馈到OPA680的输入端,形成了一个闭环系统。 3. **滤波器的数学表达式**: - 整个闭环回路的输出Vo与输入Vi之间的关系为:\( \frac{V_o}{V_i} = -\frac{R_2 R_1}{(1 + R_2 C G)} \) - 其中,R1和R2是电路中的固定电阻,C是电容值,G是VCA610的增益。 - 滤波器的极点(即截止频率)可以通过公式 \( f = \frac{G}{2\pi R_2 C} \) 计算得出。 #### 三、工作原理 1. **增益调节**: - 当控制电压Vc发生变化时,VCA610的增益G也会相应变化。 - 这种增益的变化会直接影响到滤波器的极点位置,从而改变滤波器的截止频率。 2. **反馈机制**: - 通过将VCA610的输出反馈到OPA680的输入端,形成一个稳定的闭环控制系统。 - 反馈回路有助于提高滤波器的稳定性和精度。 3. **截止频率范围**: - 本电路设计可以提供从300Hz到1MHz之间宽广的可调截止频率范围,比例约为3000:1。 - 这样的设计使得该电压控制低通滤波器非常适合应用于需要灵活调整频率特性的场合。 #### 四、应用场景 电压控制低通滤波器因其灵活性高、易于集成等特点,在多个领域都有广泛的应用前景: 1. **音频处理**:在音频设备中,用于去除高频噪声,改善音质。 2. **通信系统**:用于信号的预处理,如带限滤波等。 3. **传感器信号处理**:对于传感器输出信号的预处理,以减少高频干扰的影响。 4. **医疗设备**:在心电图(ECG)、脑电图(EEG)等生物医学信号处理中,用于去除不必要的高频噪声。 #### 五、总结 电压控制低通滤波电路通过结合VCA610和OPA680运放,实现了对外部控制电压敏感的增益调节功能,进而能够方便地调整滤波器的截止频率。这种电路不仅具有较高的灵活性,还具备良好的稳定性和精度,适用于多种需要灵活调整频率特性的应用场合。
  • TL431差直
    优质
    本文设计了一种基于TL431精密基准源的低压差直流稳压电源,具有高效、稳定和成本低的特点。 利用分立器件设计了一种低压差稳压电源电路。该电路选用常规且成本低廉的器件,结构简单明了。经过实验测试,实际电路表现出优良的负载特性和电压稳定性。
  • 系统
    优质
    《低压配电系统设计》一书深入浅出地介绍了从原理到实践的全过程,涵盖电气工程中的关键概念、安全标准及最新技术趋势,适合工程师与学生参考学习。 本规范依据国家计划委员会计综号文的要求制定。
  • TL431差直[图]
    优质
    本文介绍了一种采用TL431精密并联调整管设计的低压差直流稳压电源,详细阐述了其工作原理和电路设计方案。 基于TL431的低压差直流稳压电源设计是一种采用分立元件构建的低成本、高效率方案。该电路的核心是精密基准电压源TL431,它能提供稳定的2.5V参考电压。在这个设计中,通过结合运算放大器UA(如LM358)与TL431共同工作,可以实现输出电压稳定性和负载适应性的提升。 具体来说,TL431产生的2.5V基准电压输入到UA的同相放大器端口。由于同相放大器具有高阻抗特性,这使得基准电压不会受到负载变化的影响。同时电路中使用两个三极管(VQ1和VQ2)来形成电流放大部分,并通过串联负反馈调节输出电压,确保在负载波动时仍能保持稳定。 设计的关键参数包括: - **控制环节**:该部分由比例增益及电流放大构成,通过运算放大器UA的输出电流Irg调节三极管的工作状态,以实现对输出电压精确调整。 - **选择和设置静态工作点**:为了确保在不同工况下安全运行,需要根据反向电压、最大允许电流以及耗散功率等因素来挑选合适的调整管(VQ1和VQ2)。同时,正确设定基极电流Ih、发射极电流Ie及集电极-发射极静态电压Uce对于提高效率和稳定性至关重要。 - **过流保护**:利用电阻Ri与三极管VQ3构建的电路,在检测到输出电流超过预设值时触发,通过降低调整管基极电压来关闭电源输出,防止系统因过载而受损。 实验测试显示,在输入电源范围为5至9伏特的情况下,该设计表现出优秀的性能指标:纹波低于8毫伏。此外,无论负载条件如何变化,电路均能保持稳定输出,证明了其良好的适应性。 综上所述,基于TL431的低压差直流稳压电源是一种经济且结构简单的解决方案,在需要单电源供电的应用场景中非常实用,并具有低功耗和高可靠性的特点。