Advertisement

圆形微带贴片单频天线的设计方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了圆形微带贴片单频天线的设计原理与步骤,详细探讨了其结构参数对性能的影响,并提供了优化设计的方法。 微带天线是在一块背面敷以金属薄层作为接地板的介质基片上贴一金属辐射片而形成的天线。它主要采用微带线和同轴线两种馈电方式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    本文介绍了圆形微带贴片单频天线的设计原理与步骤,详细探讨了其结构参数对性能的影响,并提供了优化设计的方法。 微带天线是在一块背面敷以金属薄层作为接地板的介质基片上贴一金属辐射片而形成的天线。它主要采用微带线和同轴线两种馈电方式。
  • 线
    优质
    本研究聚焦于单频圆形单极微带天线的设计与优化,探索其在无线通信中的应用潜力,旨在提高信号传输效率和质量。 微带天线是一种在介质基片上贴附金属辐射片,并在其背面敷以金属薄层作为接地板的天线类型。这种天线主要采用微带线或同轴馈电方式,通过金属贴片与金属接地板之间的缝隙来激发并辐射电磁场。因此也被称为缝隙天线。 尽管存在频段窄、功率容量小、损耗大及基底材料对性能影响显著等缺点,但其体积小巧、重量轻盈、低剖面设计以及易于集成等特点使其在军事和民用领域得到广泛应用。微带天线适用于100 MHz至50 GHz范围内的多种应用场景,包括卫星通信系统、指挥控制系统、导弹遥测设备及武器引信装置。 无线电引信技术可以用于控制武器弹丸的引爆时间或位置,在战场上实现更精准且高效的杀伤效果。
  • 2012年线
    优质
    本论文聚焦于2012年双频微带贴片天线的设计与优化,探讨了其在无线通信中的应用及技术挑战。通过改进结构参数和材料选择,实现了宽带宽、低剖面的高效天线设计方案。 基于矩形微带辐射贴片的设计理念,并通过选择适当的50Ω同轴线馈电位置,我们设计了一款工作在1.3 GHz及1.8 GHz频段的双频微带贴片天线。利用ANSOFT公司的HFSS三维仿真软件进行尺寸优化,确保与微带线的良好匹配并减少回波损耗。实验结果表明,在这两个频率点上,端口散射参数S11显示出了较低的回波损耗值。这一方法为实际双频天线的设计提供了有价值的指导。
  • Patch Microstrip Circular: 利用Antenna Toolbox与分析线-MATLAB...
    优质
    本简介介绍使用MATLAB Antenna Toolbox进行圆形微带贴片天线(Patch Microstrip Circular)的设计、仿真及分析过程,涵盖天线的基本参数设置、性能优化和辐射特性评估。 此提交包含一个圆形微带贴片天线对象及其构建天线阵列的示例。Antenna Toolbox 使用矩量法来计算天线的阻抗、远场辐射方向图和其他属性。
  • 基于HFSS线仿真
    优质
    本研究利用HFSS软件进行矩形微带贴片天线的设计与仿真分析,优化了天线性能参数,为实际应用提供了理论依据和技术支持。 HFSS仿真实例及仿真论文的设计方法适合用作参考文献。
  • 36GHz线阵列
    优质
    本研究聚焦于设计一款工作频率为36GHz的微带贴片天线阵列,旨在提升毫米波通信系统的性能与效率。通过优化单元贴片结构及阵列布局,实现宽带、高增益和优良方向性特性,适用于5G/6G无线通信等前沿科技领域。 ### 36GHz微带贴片天线阵列设计知识点 #### 1. 微带贴片天线阵列概述 - **定义**: 微带贴片天线是一种平面结构的天线类型,通常安装在介质基板上。由于体积小、重量轻和易于集成等特点,在无线通信系统中广泛应用。 - **工作原理**: 这种类型的天线通过在介质基板上的金属贴片来辐射电磁波。当电流从馈电点进入贴片时,会在周围产生电磁场,并向外发射出电磁波。 #### 2. 设计步骤详解 ##### 2.1 材料选择与尺寸确定 - **材料选择**: 使用Rogers RT/Duroid 5880作为介质基板。这种材料具有良好的介电性能和稳定性,适用于高频应用。 - **确定尺寸**: 贴片厚度为0.0178mm,并采用铜材质。通过空腔模型理论与经验公式来决定单个贴片的结构参数。 - **仿真验证**: 使用HFSS软件进行模拟并调整相关参数以达到理想的性能指标。 ##### 2.2 四单元贴片阵列设计 - **阵列结构**: 利用四个元件组成的基本侧馈方式构建天线,简化了设计和生产流程。 - **馈线设计**: 关键在于一级馈线的弯曲部分及二、三级尺寸的设计。依据传输理论与逐级匹配原则优化各段长度。 - **相位考虑**: 对于水平极化天线来说,可以忽略输入信号之间的相位差异,从而简化了设计过程。 - **优化过程**: 通过HFSS软件对结构参数进行扫描和调整以确保最佳性能。 ##### 2.3 十六单元微带贴片天线设计 - **扩展结构**: 在四元件阵列基础上进一步叠加形成十六个单元的大型微带贴片天线。 - **尺寸优化**: 计算并模拟五至九级馈线的具体参数,确保整个系统的最佳性能表现。 - **性能评估**: 仿真显示该天线阵列增益为13.89dB,在电压驻波比小于2时的带宽达到1GHz,相对带宽达2.6%。 #### 3. 关键技术指标 - **增益**: 表示集中能量的能力。设计中的最大值为13.89dB,表明该天线阵列能够有效向特定方向辐射。 - **电压驻波比(VSWR)**: 反映了与传输线路之间的阻抗匹配程度。VSWR小于2表示良好匹配减少了反射损失。 - **带宽**: 表示在多大频率范围内保持稳定性能的能力。此设计的带宽为1GHz,相对带宽达到2.6%,表明天线具备较广泛的工作范围。 #### 4. 技术优势 - **结构简单**: 并联侧馈方式大大简化了制造过程。 - **加工方便**: 所选材料和构造使该设备易于生产并降低了成本。 - **高性能**: 精确的设计与优化确保天线具有优秀的增益、驻波比及带宽性能。 #### 5. 应用领域 - **无线通信系统**: 如第五代移动网络(5G)以及卫星通讯等高频应用场合。 - **雷达技术**: 在探测和跟踪等领域有广泛应用前景。 - **科学研究项目**: 包括天文学观测、大气研究等方面。
  • 宽L极化线
    优质
    本设计介绍了一种宽带宽、L频段工作的圆极化贴片天线。其独特结构保证了高效的圆极化性能和广泛的带宽范围,适用于卫星通信等需要高性能圆极化天线的场景。 圆极化全向天线因其优异的性能特点,在现代无线应用领域越来越受到重视。本段落提出了一种适用于L频段、具有宽轴比带宽特性的微波贴片天线设计,该天线由上下两层介质构成,下层通过微带馈线耦合进行供电,并在接地板上蚀刻十字交叉缝隙以促进圆极化并优化顶层贴片的耦合效果。根据实验结果,在3dB轴比范围内(1.023~1.060GHz),该天线表现出色,其增益值高于5.68dBi,并且在中心频率点(1.04 GHz)时前后瓣比超过20dB。
  • 基于CST10GHz矩线仿真
    优质
    本文介绍了使用计算机模拟软件CST进行的一种新型10GHz矩形微带贴片天线的设计与仿真过程,探讨了其电气性能及优化方法。 本段落介绍了一个频率为10GHz的矩形微带贴片天线的仿真设计。为了产生有效辐射,需要根据介质板的介电常数、设计的频率和有效介电常数等因素计算出相应的尺寸参数。在CST中建立模型后,进行了边界条件设置和优化,并得到了S参数、方向图以及相关尺寸和场分布图。附件提供了该天线的CST仿真设计文件。
  • 线同轴探针
    优质
    本研究探讨了微带贴片天线中同轴探针的设计方法与优化技术,旨在提高天线性能和效率。通过理论分析和实验验证相结合的方式,提出了一种新型的同轴探针设计方案,适用于无线通信领域中的多种应用场景。 利用HFSS进行了微带天线的设计仿真,并详细给出了操作过程和仿真结果。
  • 提高线-如何增加线
    优质
    本文探讨了提升微带贴片天线带宽的有效策略,并深入分析了增加天线带宽的具体方法和技术。 不同的天线提高带宽的具体方法可能有所不同。这里以微带贴片天线为例来讲解如何提升其带宽。 微带贴片天线的基本结构包括介质基板、金属贴片以及接地平面等部分,通过优化这些组成部分的设计可以有效增加天线的带宽。具体的方法有很多,例如采用缝隙耦合馈电方式、引入寄生单元或者使用非均匀厚度的介质材料等技术手段来改善天线性能。 需要注意的是,在实际应用中还需要考虑其他因素如增益和效率之间的权衡问题,因此在选择合适的宽带化方案时需要综合考量。