Advertisement

两轮平衡车的简易串级PID控制系统

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了在两轮自平衡车辆中实现稳定控制的方法,通过设计并应用简易串级PID控制算法,优化了系统的响应速度与稳定性。 本人是大一学生,在最近完成了两轮平衡小车的设计与制作,主控芯片使用的是STM32F103RCT6。由于目前的能力有限,我决定将项目上传以赚取积分用于下载所需资源。如果有需要的可以联系我下载该项目资料,项目的注解相对详细。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PID
    优质
    本文探讨了在两轮自平衡车辆中实现稳定控制的方法,通过设计并应用简易串级PID控制算法,优化了系统的响应速度与稳定性。 本人是大一学生,在最近完成了两轮平衡小车的设计与制作,主控芯片使用的是STM32F103RCT6。由于目前的能力有限,我决定将项目上传以赚取积分用于下载所需资源。如果有需要的可以联系我下载该项目资料,项目的注解相对详细。
  • STM32与MPU6050PID资料
    优质
    本资料介绍基于STM32微控制器和MPU6050陀螺仪传感器构建的两轮自平衡小车设计,详述了PID算法在姿态稳定中的应用。 很久之前整理了一些关于两轮平衡车的资料,主要包括文档以及部分驱动代码。
  • 初学者指南:1.zip_blackmfy_fat4kz___
    优质
    本教程为初学者提供详细的指导,帮助你动手制作一台趣味十足的两轮自平衡小车。从原理解析到实践操作,全面覆盖,带你领略智能科技的魅力。 在“零基础制作两轮自平衡小车1.zip”压缩包里包含了一套针对初学者的教程,旨在帮助对电子工程和机器人技术感兴趣的朋友们从头开始学习设计、组装并编程实现一个两轮自平衡小车。 以下是该教程的关键知识点: 1. **基础理论**:了解两轮自平衡小车的工作原理,这涉及到物理学中的力学平衡概念,特别是角动量守恒和牛顿第二定律。通过调整电机转速来改变自身的倾斜角度以保持稳定。 2. **硬件组件**:详细讲解所需的电动机、减速齿轮箱、陀螺仪与加速度计(IMU)、微控制器(如Arduino或Raspberry Pi)以及电池等部件,理解每个部分的作用及其连接方式。 3. **电路设计**:学习如何将各个硬件组件正确地连接起来。这包括电源管理、信号传输和电机控制等方面的知识。 4. **微控制器编程**:使用C或Python编写程序来实现小车的平衡算法。PID控制是常用的方法,它通过调整电机转速修正姿态。 5. **传感器数据处理**:理解陀螺仪与加速度计的数据含义,并学习如何读取和解析这些信息以监控小车状态。 6. **机械结构设计**:框架的设计材料选择至关重要。需要考虑重心位置对稳定性的影响,确保车身既稳固又轻巧。 7. **调试与优化**:在实际制作过程中可能出现的问题如电机震动、系统延迟等的解决方法和策略,以提高小车性能使其运行更加平滑稳定。 8. **安全考量**:了解避免短路、防止过热以及其他操作电动设备时的安全措施。 9. **项目实践**:跟随教程逐步完成每一个步骤,亲手组装并测试你的两轮自平衡小车。这将极大提升动手能力和问题解决能力。 10. **社区互动**:“blackmfy”和“fat4kz”可能是该课程作者或相关讨论组的代号。通过参与相关的论坛或者社区可以获取更多资源,与其他爱好者交流经验共同进步。 这份教程涵盖了从理论到实践的所有环节,是非常实用的学习指南。完成这个项目不仅能学到硬件设计与编程技能,还能体验DIY的乐趣,并提高创新思维和工程实践能力。
  • PID与LQR公式推导.pdf
    优质
    本文档详细探讨了针对两轮平衡车的PID和LQR两种经典控制策略的数学建模及算法推导过程,为该领域的研究与应用提供了理论基础。 本段落档介绍了两轮平衡车的PID和LQR控制方法的公式推导过程,并包含一些中文注释以帮助理解。文档详细地描述了针对PID和LQR部分的具体建模步骤以及相关的计算公式,旨在为读者提供一个清晰、系统的理论基础和技术指导。
  • ADRC_基于MATLAB模拟_MATLAB项目
    优质
    本项目利用MATLAB开发了两轮小车(平衡车)的控制系统仿真模型,旨在通过算法优化实现车辆稳定与操控。 基于自抗扰控制算法的两轮平衡小车设计与实现,在MATLAB环境中进行模拟和测试。该系统能够有效提升两轮自平衡车的稳定性和响应速度,适用于多种应用场景。
  • 基于开发设计
    优质
    本项目致力于研发一种基于两轮的自平衡小车控制系统,通过精确的姿态检测与算法优化实现车辆稳定行驶。该系统集成了传感器数据采集、姿态估计及控制策略执行等功能模块,旨在提升移动机器人的自主导航能力和应用场景多样性。 随着经济的快速发展以及城市人口的增长,交通拥堵、能源消耗与环境污染问题日益严重,成为人们关注的重点难题之一。在此背景下,新型交通工具的研发显得尤为重要,其中两轮自平衡小车因其灵活性高、使用便捷且节能的特点而得到了迅速发展。然而,高昂的成本依然是其普及的主要障碍。 深入研究此类车辆不仅有助于提升性价比,而且对增强我国在该领域的科研实力及拓展机器人技术的应用范围具有重要的理论与实践价值。例如,在全国大学生飞思卡尔智能车竞赛中,第七届电磁组小车首次采用了两轮设计来模拟自平衡电动智能车的工作原理;而在第八届光电组比赛中,则进一步将这种车型作为控制系统的核心平台。 这些比赛的设计项目涉及控制、模式识别、传感技术、汽车电子学、电气工程、计算机科学以及机械和能源等多个学科的知识,促进了跨领域的知识整合与创新。
  • 基于自抗扰仿真研究
    优质
    本研究旨在探索基于自抗扰控制技术的两轮自平衡车仿真系统,通过优化算法提高车辆在动态环境中的稳定性和响应速度。 为了应对两轮自平衡车在不同用户身高体重差异下导致的系统模型不准确及控制器控制性能不佳的问题,本段落将自抗扰控制技术应用于此类车辆的运动平衡控制系统中。首先利用拉格朗日方法建立了两轮自平衡车的动力学模型,随后根据系统的特性推导出了实现该类车型自平衡控制所需的自抗扰控制器规则。最后,在Simulink仿真平台上构建了两轮自平衡车控制系统的实验环境,并分别使用线性自抗扰控制和经典自抗扰控制方法进行了对比试验。结果显示:相较于传统的自抗扰控制器,改进后的自抗扰控制器能够更好地适应用户身高体重的变化情况,并能更有效地使系统达到稳定的运行状态。
  • 视频
    优质
    这段视频展示了两轮平衡车的操作和性能,通过近距离拍摄以及多角度切换,让观众更加深入地了解这种智能代步工具的独特魅力。 该资源是百度云链接,包含平衡车的教学视频,所有视频均为无密码状态,适合初学者学习。
  • 小型
    优质
    小型两轮平衡车是一种通过人体重心变化来控制方向和速度的个人代步工具,适合短途出行及娱乐使用。 主要利用陀螺仪以及倾角传感器来实现小车的站立。
  • 关于建模与研究
    优质
    本研究专注于两轮平衡车系统的数学建模及其控制策略优化,旨在提升车辆动态性能和稳定性,探索智能算法在实际工程中的应用。 两轮平衡车的建模与控制研究