Advertisement

STM32单片机 利用按键切换矩阵键盘与数码管

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍如何使用STM32单片机通过外部按键控制,实现矩阵键盘输入并驱动数码管显示,适用于嵌入式系统开发学习。 在STM32程序设计中使用外部中断实现主函数的切换功能如下: ```c int key_can(void); // 按键扫描函数声明 void GPIO_Configuration(void); // 初始化按键IO口 // 全局变量声明,作用:在整个代码文件中的所有函数里都可以访问这个变量 int cheak = 0; // 矩阵键盘按下的标志位 int main(void) { u8 code[10] = {0xf3, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f}; u8 ss[] = {1,2,3,A,4,5,6,B,7,8,9,C,*,0,#,D}; // 定义一个u8型数组 u8 cod[14] = {0x06, 0x5b, 0x4f, 0x3f, 0x66, 0x6d, 0x7d, 0x3f, 0x07, 0x7f, 0x6f, 0x3f, 0x3f, 0x3f}; u8 t = 0; int j; delay_init(); // 延时函数初始化 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 设置NVIC中断分组为抢占优先级2,响应优先级2 uart_init(115200); // 串口初始化设置波特率为115200 LED_Init(); // 初始化与LED连接的硬件接口 EXTIX_Init(); GPIO_Configuration(); // 初始化外部中断输入 LED0 = 0; // 先点亮红灯 while (1) { if(a == 1) { // 按键KEY1,消抖 for(j=9; j>=0; --j){ if(b != 1){ GPIO_Write(GPIOB, code[j]); delay_ms(1000); } } } if(b == 1) { // 按键KEY0 printf(请按键 \n); t = key_can(); // 获取按下的某个键的返回值,并赋给t if (cheak){ // 如果非零,则执行if内的语句;如果为0,不执行if对应语句; printf(\n\rkey=:%c \n\r, ss[t]); GPIO_Write(GPIOB, cod[t]); cheak = 0; } } } } ``` 以上代码片段展示了如何在STM32微控制器中使用外部中断来处理按键事件,并通过这些事件切换主函数的执行流程。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32
    优质
    本项目介绍如何使用STM32单片机通过外部按键控制,实现矩阵键盘输入并驱动数码管显示,适用于嵌入式系统开发学习。 在STM32程序设计中使用外部中断实现主函数的切换功能如下: ```c int key_can(void); // 按键扫描函数声明 void GPIO_Configuration(void); // 初始化按键IO口 // 全局变量声明,作用:在整个代码文件中的所有函数里都可以访问这个变量 int cheak = 0; // 矩阵键盘按下的标志位 int main(void) { u8 code[10] = {0xf3, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f}; u8 ss[] = {1,2,3,A,4,5,6,B,7,8,9,C,*,0,#,D}; // 定义一个u8型数组 u8 cod[14] = {0x06, 0x5b, 0x4f, 0x3f, 0x66, 0x6d, 0x7d, 0x3f, 0x07, 0x7f, 0x6f, 0x3f, 0x3f, 0x3f}; u8 t = 0; int j; delay_init(); // 延时函数初始化 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 设置NVIC中断分组为抢占优先级2,响应优先级2 uart_init(115200); // 串口初始化设置波特率为115200 LED_Init(); // 初始化与LED连接的硬件接口 EXTIX_Init(); GPIO_Configuration(); // 初始化外部中断输入 LED0 = 0; // 先点亮红灯 while (1) { if(a == 1) { // 按键KEY1,消抖 for(j=9; j>=0; --j){ if(b != 1){ GPIO_Write(GPIOB, code[j]); delay_ms(1000); } } } if(b == 1) { // 按键KEY0 printf(请按键 \n); t = key_can(); // 获取按下的某个键的返回值,并赋给t if (cheak){ // 如果非零,则执行if内的语句;如果为0,不执行if对应语句; printf(\n\rkey=:%c \n\r, ss[t]); GPIO_Write(GPIOB, cod[t]); cheak = 0; } } } } ``` 以上代码片段展示了如何在STM32微控制器中使用外部中断来处理按键事件,并通过这些事件切换主函数的执行流程。
  • STM32显示.rar
    优质
    本资源提供STM32微控制器在矩阵键盘上实现按键检测及LED显示的应用程序和电路设计,适用于嵌入式系统开发学习。 STM32 矩阵键盘程序可以实现任意不连续引脚的完美配置,并且能够显示在JLX12864G-086-PC显示器上,该显示器支持引脚的任意配置并能完美显示内容。
  • 4x4显示控制系统
    优质
    本系统采用4x4键盘矩阵设计结合数码管显示技术,基于单片机控制实现高效的数据输入与输出功能,适用于各类小型电子设备的人机交互界面开发。 本段落介绍了一种使用数码管显示4×4键盘矩阵按键的方法,并附有源代码和仿真图,经实测可正常工作。
  • 内的独立
    优质
    本文探讨了在单片机应用中独立按键与矩阵键盘的设计原理及实现方法,比较了两者优缺点,并提供了实际编程案例。 按键可以根据结构原理分为两类:触点式开关按键和无触点式开关按键。前者包括机械式开关、导电橡胶式开关等类型;后者则有电气式按键、磁感应按键等多种形式。其中,触点式的成本较低而寿命较长的非接触型键具有更长的工作时间。 在单片机应用系统中,除了复位按钮外的所有其他按键都是通过其开闭状态来设定控制功能或输入数据的。当用户按下特定的功能键或者数字键时,计算机需要根据该操作执行相应的指令。这种信息的传递过程与软件的设计紧密相关。 对于一组按键或是整个键盘来说,它们通常会连接到一个接口电路并与CPU相连。通过这种方式,CPU可以使用查询或中断的方式来检测是否有新的输入,并识别出具体是哪一个按钮被按下。一旦确定了键值后,系统将把该信息送入累加器中并根据此执行相应的功能程序。完成特定任务之后再返回主程序继续运行。 机械触点式按键开关在微机键盘中最常见,这类按键能够将物理接触的开合转换为电气信号的变化,并提供符合TTL逻辑电平的标准输出以适应通用数字系统的需求。然而,在按下或释放这些按钮时,由于受到机械弹性的干扰作用的影响,会经历一段短暂且不稳定的触点抖动期之后才会进入稳定状态。
  • 51编程(、独立及PWM输出)
    优质
    本课程专注于51单片机的应用开发,涵盖矩阵键盘与独立按键的设计原理及其应用、数码管显示技术以及脉宽调制(PWM) 输出技术的实现方法。 这段文字描述了一个包含矩阵键盘、独立按键、数码管以及PWM输出的51单片机程序。该程序包括了独立按键消抖功能,并且能够通过矩阵键盘控制8位静态数码管和动态数码管,非常适合用于学习51单片机编程。
  • 51Proteus仿真示例:显示4x4
    优质
    本示例展示如何利用Proteus软件进行51单片机仿真,实现通过4x4键盘输入并在数码管上实时显示的功能。 51单片机Proteus仿真实例:数码管显示4×4键盘矩阵按键 该实例展示了如何使用51单片机与Proteus软件进行仿真操作,具体实现功能为通过4x4的键盘输入来控制数码管显示相应的数字或字符。此过程包括了硬件连接设计、代码编写及调试等步骤,在实际应用中具有一定的参考价值和学习意义。 (重复内容已省略)
  • C51:通过共阳显示4x4的16进制编号0~F
    优质
    本项目基于C51单片机实现4x4矩阵键盘扫描,通过连接共阳数码管实时显示键值的16进制编码(0至F),提供直观反馈并简化用户交互。 任务要求:使用共阳数码管显示4*4矩阵键盘中按下键的16进制键号“0~F”。例如,当按压1号键时显示“1”,E号键按下则显示E等。 硬件连接如下: - C51数码管段码端接P2口 - 矩阵键盘行线(扫描线输出)通过P1.3~P1.0与矩阵键盘相连 - 矩阵键盘列线(按键状态输入)则由P1.7~P1.4接入
  • STM32
    优质
    本简介探讨了如何使用STM32微控制器实现对矩阵键盘的有效管理,包括硬件连接和软件编程技巧。 STM32是一款基于ARM Cortex-M内核的微控制器系列,由意法半导体(STMicroelectronics)生产,在嵌入式硬件领域广受欢迎,因其高效能、低功耗及丰富的外设接口而受到青睐。本段落探讨如何在STM32上实现矩阵按键和独立按键的处理。 矩阵按键是一种节省IO资源的方式,将多个按键排列成行和列通过读取行线和列线的状态来识别按键。这种方式适用于有大量但IO口有限的场景。其原理是:行线连接到微控制器输出端,而列线连接至输入端;按下某个键时,对应的行列会短路,并且可以通过检测电平变化确定按下的具体按钮。 在STM32中实现矩阵和独立按键通常使用GPIO进行配置。对于矩阵按键而言,需要将行设为输出模式、列设为输入模式并开启中断。然后逐行置低行线同时监控列的改变;若某一行被置低后检测到列状态变化,则表明有键被按压,并通过记录行列的状态来确定具体哪个键被按下。 独立按键则是每个按钮对应一个GPIO口,配置相对简单:只需将所连接的GPIO设为输入模式并开启中断。当按钮被按下时,对应的GPIO电平会由高变低触发中断服务程序识别出相应的事件。 文中提到的文件列表中的实验3-2.jpg和实验3-1.jpg可能是关于操作步骤或电路图的图片;而实验3-仿真实验说明.txt可能包含进行软件仿真指导的相关信息。shiyan three.2.pdsbak及shiyan three.2.pdsprj.LAPTOP-M1B97SRN.ASUS.workspace为工程文件,存储项目配置和编译详情;STM32F407VET6-05-矩阵键盘与STM32F407VET6-04-按键输入是源码文件实现具体功能。 实践中还需理解STM32的中断系统及GPIO初始化函数如GPIO_Init()。对于矩阵按键,可能还会用到延时函数(例如HAL_Delay)以防止抖动导致误判;处理键事件通常采用中断驱动机制提升实时响应性。 综上所述,在STM32实现矩阵和独立按键涉及的知识点包括:GPIO配置、中断处理、键扫描算法以及软件仿真技术。这些内容对于嵌入式系统开发至关重要,通过学习与实践可以掌握有限IO资源下有效管理多个按钮的方法,进而提高系统的交互体验。
  • 51Proteus仿真示例:显示4x4 (2)
    优质
    本项目为51单片机与Proteus联合仿真的教程实例,演示了如何通过4x4矩阵键盘输入,并在数码管上实时显示按键状态。适合初学者学习嵌入式系统开发。 51单片机Proteus仿真实例:数码管显示4×4键盘矩阵按键 该实例展示了如何使用51单片机在Proteus软件中实现一个功能,即通过连接的4x4键盘矩阵输入来驱动数码管进行相应的数字或字符显示。此过程包括了硬件电路的设计、程序代码编写以及仿真调试等多个步骤。
  • 4x4
    优质
    简介:本项目设计基于单片机控制的4x4矩阵式键盘系统,能够高效地实现按键检测与处理功能,适用于各类嵌入式应用。 单片机4*4矩阵键盘是微控制器领域常见的输入设备,主要用于收集用户数据,在许多嵌入式系统和物联网(IoT)设备中有广泛应用,因其节省空间、成本效益高且易于实现而受到青睐。 该类型的键盘由16个按键构成(即4行与4列的交叉点),每个键通过其对应的行列线连接到单片机上。设计中行线接至输出口,列线则接到输入口;当用户按下某个键时,相应的行列线路被短路,从而让微控制器能够检测并识别按键动作。 在C51编程语言下编写源代码,并使用Proteus进行仿真和硬件调试以确保程序的可操作性。具体来说,在扫描过程中,单片机会依次将每一行线设为低电平状态,然后读取列的状态信息;如果某行列同时处于低电位,则表明有键被按下并可以确定按键位置。 例如,当第一行变低时第二列表现同样信号,意味着用户按下了数字“1”对应的键。通过这种方式扫描所有可能的组合来识别每个按钮的具体操作情况。 Proteus仿真软件用于验证C51程序的功能正确性,提供了一个虚拟硬件环境供开发者在焊接实物前测试和修正代码问题;加载编译好的HEX文件后运行模拟器,并观察单片机接口状态及LED或LCD显示结果以确认按键识别功能是否正常工作。 实际应用中还需注意以下几点: - **消除抖动**:由于机械按钮的物理特性,存在瞬间接触不稳定的现象,可能导致误读。因此需要加入去抖机制。 - **延迟检查**:设置短暂延时来确保检测到的是真实按键操作而非瞬态干扰。 - **处理多键按下情况**:设计合理的扫描策略和解析算法以识别多个同时被按下的组合按钮。 - **编码与功能映射**: 对每个按键进行特定的ASCII码或自定义指令映射,以便单片机根据输入执行相应任务。 - **电源管理优化**:在低功耗应用场景中降低键盘扫描频率来节省电量。 综上所述,4*4矩阵键盘的应用原理及实现方法已详细说明。无论是C51编程还是Proteus仿真测试都旨在保证其于实际产品中的稳定性和可靠性,并为后续学习和实践提供基础代码文件支持。