Advertisement

扩展卡尔曼滤波器 (EKF) 用于 GPS:该滤波器提供扩展卡尔曼滤波的便捷实现,并包含 GPS 定位示例(matlab开发)。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该压缩文件收录了扩展卡尔曼滤波 (EKF) 以及全球定位系统 (GPS) 的核心理论和相应算法的概述。 其主要目标是提供一种相对简单可行的 EKF 实现方案。 此外,它简要地阐述了 GPS 系统中应用的卡尔曼滤波算法。 为了便于理解,我们提供了 EKF 与最小二乘法结合进行 GPS 定位所使用的原始数据以及最终的解决方案。 若需获取更深入的细节,请查阅随压缩文件提供的 readme.txt 文档。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GPS(EKF): 便GPS功能-MATLAB
    优质
    本项目提供了一个易于实现的GPS扩展卡尔曼滤波器(EKF)算法,附带详尽的代码注释和GPS数据处理实例,适用于MATLAB环境。 此 zip 文件包含扩展卡尔曼滤波 (EKF) 和全球定位系统 (GPS) 的原理及算法的简要说明。其目的在于提供一种较为容易实现的 EKF 方法,并且还概述了 GPS 中使用的卡尔曼滤波算法。在展示 EKF 应用的例子中,我们提供了原始数据以及采用 EKF 和最小二乘法进行 GPS 定位的具体解决方案。如需更多详细信息,请参阅 readme.txt 文件。
  • EKF.rar_PKA___
    优质
    本资源包含EKF(扩展卡尔曼滤波)相关资料,适用于深入学习PKA(概率知识适应)算法及卡尔曼滤波技术。内含基础理论与应用实例,适合研究和工程实践参考。 扩展卡尔曼滤波(EKF)程序已开发完成,并且仿真结果已经保存在文件夹内,这是一个非常好的程序。接下来将详细介绍卡尔曼滤波器的工作原理,从线性卡尔曼滤波器开始入手,对比分析扩展卡尔曼滤波与线性化卡尔曼滤波之间的差异。我们将从系统模型到具体的算法流程进行讲解,并详细解释这些不同之处。
  • 使MATLAB(EKF)
    优质
    本项目利用MATLAB编程环境实现了扩展卡尔曼滤波器(EKF)算法。通过构建非线性系统的状态估计模型,并展示了如何在实际问题中应用该技术进行预测和修正,有效提升了系统的观测精度与性能。 在MATLAB中实现扩展卡尔曼滤波器(Extended Kalman Filter, EKF)涉及多个步骤和技术细节。EKF是一种非线性状态估计技术,它通过近似方法将非线性的系统模型转化为线性形式以便应用标准的卡尔曼滤波算法进行处理。 要实现在MATLAB中的EKF,首先需要定义系统的动力学方程和观测模型,并且这些模型通常是非线性的。接下来是计算雅可比矩阵的过程,即状态转移函数和测量函数关于状态变量的一阶偏导数。这一步骤对于将非线性系统近似为线性系统至关重要。 在实现过程中,还需要初始化滤波器的状态估计以及协方差矩阵,并且设定适当的噪声参数来模拟过程中的不确定性。每次迭代中,EKF都会先预测当前时间点的系统状态和误差协方差矩阵,然后利用新的观测数据进行更新操作以改进对系统的理解。 整个算法需要反复执行上述步骤直到完成所有的时间步长或达到预定的目标精度为止。在MATLAB环境中实现这些功能时,可以使用内置函数或者自定义编写代码来处理每一个环节的具体计算任务。
  • MATLAB——
    优质
    本项目介绍如何使用MATLAB实现扩展卡尔曼滤波器(EKF),这是一种非线性状态估计技术。通过实例代码演示其在目标跟踪和机器人导航中的应用,适合初学者学习掌握。 利用MATLAB开发扩展卡尔曼滤波器,并通过GPS定位实例来实现该方法的一种简便途径。
  • 优质
    本文探讨了卡尔曼滤波器及其扩展版本在多种应用场景中的应用,包括导航、控制和信号处理等领域,分析其原理及优势。 卡尔曼滤波器、扩展卡尔曼滤波器以及移动时域估计在搅拌罐混合过程中的应用进行了研究。该存储库采用与高级过程控制及搅拌罐混合过程实施和比较中所使用的系统相同的配置,以便进行相关测试和分析。
  • 指南:讲解-MATLAB
    优质
    本资源深入浅出地介绍了卡尔曼滤波器及其扩展版在状态估计中的应用,并通过MATLAB实例详细展示了如何实现和使用扩展卡尔曼滤波器。 卡尔曼滤波器是一种在信号处理领域广泛应用的高级算法,在估计理论和滤波问题中有重要应用价值。它基于数学统计原理提供了一种线性递归方法来处理噪声干扰下的动态系统状态估计,由鲁道夫·卡尔曼提出。本教程将深入探讨卡尔曼滤波器的基本概念及其在非线性系统的扩展形式——扩展卡尔曼滤波器(EKF),并指导如何利用MATLAB实现该算法。 首先了解卡尔曼滤波器的工作机制:它通过动态模型和测量模型进行迭代更新,以估计系统状态。这一方法假设噪声为高斯分布,并采用最小均方误差来优化预测结果。每个时间步骤中,卡尔曼滤波主要包含两个阶段——预测与更新: 1. 预测阶段:基于上一时刻的状态估计及动态模型,推测下一时刻的状态。 2. 更新阶段:结合当前测量数据和卡尔曼增益对状态进行校正。 扩展卡尔曼滤波器(EKF)则针对非线性系统进行了改进。实际应用中,许多系统的特性是非线性的。通过泰勒级数展开法将这些非线性函数近似为线性形式后,再运用标准的卡尔曼滤波步骤处理数据,即构成了EKF的核心思想。 在MATLAB环境中实现卡尔曼滤波器时,可以利用内置工具箱或编写自定义代码来完成。教程中提供的示例文件包括了实施EKF所需的全部内容: 1. 定义系统动态模型和测量方程。 2. 设置初始状态估计、噪声协方差矩阵等参数。 3. 在主循环内执行预测与更新步骤,迭代计算直至获得最终结果。 通过学习本教程,初学者能够理解EKF的工作原理,并掌握其在MATLAB中的实现方法。运行示例代码并分析输出数据将帮助读者直观地观察卡尔曼滤波器如何从噪声信号中提取有用信息,尤其适用于处理动态变化的正弦波等类型的数据。 此教程为学习卡尔曼滤波及其应用提供了宝贵的资源和指导,不仅涵盖了理论知识还包含了实际编程经验。这对于希望在信号处理或控制系统领域进行深入研究的人来说具有重要价值。通过进一步的学习与实践,读者不仅可以增强自己的理论基础,还能提升编程技能,从而更好地应对未来的研究挑战或者项目开发任务。
  • 工具标准、双重及平方根形式-MATLAB
    优质
    卡尔曼滤波器工具包是一个MATLAB资源,提供标准、扩展和双重卡尔曼滤波算法以及平方根形式的卡尔曼滤波器实现。 该软件包实现了四种不同的卡尔曼滤波器:标准卡尔曼滤波器、扩展卡尔曼滤波器、双卡尔曼滤波器和平方根卡尔曼滤波器,并提供了每种过滤器类型的示例,以展示它们的实际应用情况。 对于这四种类型,KF函数接受多维系统的输入噪声样本,在考虑这些噪声样本中固有的时变过程和噪声协方差的情况下生成真实系统状态的估计。使用指数加权(或未加权)移动平均值来从含有白噪点的数据测量中推断出时间变化中的系统协方差。 标准卡尔曼滤波器是最基本的形式,它基于一个模型假设:数据包含实际系统的状态和随机噪声。扩展卡尔曼滤波器则是在此基础上的改进版本,允许用户指定非线性系统模型,并在执行过程中通过迭代的方式对其进行线性化处理。 双卡尔曼滤波器同时解决了两个标准卡尔曼滤波问题: 1) 对于给定的数据集拟合自回归(AR)模型并利用卡尔曼滤波器更新该模型; 2) 在每次迭代中,先应用AR模型再执行标准KF的更新步骤。 平方根形式的卡尔曼滤波器则采用了一种不同的方法来计算协方差矩阵的逆,以提高数值稳定性。
  • .7z
    优质
    本资源包含关于卡尔曼滤波及扩展卡尔曼滤波的详细介绍和相关算法实现,适用于学习状态估计和信号处理的学生和技术人员。 卡尔曼滤波(Kalman Filter)与扩展卡尔曼滤波(Extended Kalman Filter, EKF)是信号处理及控制理论中的常用算法,在估计理论与动态系统中应用广泛。这两种方法基于概率统计的数学模型,用于从有噪声的数据中估算系统的状态。 卡尔曼滤波是一种线性高斯滤波器,假设系统的转移和测量更新过程遵循高斯分布,并以最小化均方误差为目标进行优化。它通过预测和更新两个步骤不断改进对系统状态的估计。在MATLAB环境中,可能有一些实现卡尔曼滤波的例子代码(例如`example2_KF.m` 和 `example3_KF.m`),这些例子会展示如何设置初始条件、定义系统矩阵、观测矩阵以及过程噪声协方差和观测噪声协方差等参数。 扩展卡尔曼滤波则是针对非线性系统的卡尔曼滤波的一种变体。当面对包含非线性函数的模型时,EKF通过局部线性化这些函数来应用标准的卡尔曼滤波技术。它在自动驾驶车辆定位、飞机导航和传感器融合等领域有着广泛的应用价值。`example1_EKF.m` 可能是使用EKF处理非线性问题的一个MATLAB示例代码,涉及雅可比矩阵计算以实现对非线性的近似。 理解以下关键概念对于学习这两种滤波器至关重要: - **状态空间模型**:定义系统如何随时间演化以及观测数据与真实系统的对应关系。 - **系统矩阵(A)和观测矩阵(H)**:分别描述了系统内部的状态变化规律及从实际状态到可测量输出的映射规则。 - **过程噪声和观测噪声协方差**:用来量化模型中的不确定性和误差,通常用Q和R表示。 - **预测步骤与更新步骤**:前者基于先前估计值进行未来时间点的状态预测;后者则利用当前时刻的新数据来修正之前的预测结果。 - **卡尔曼增益(K)**:用于决定新测量信息在状态估计中的重要程度。 - **雅可比矩阵**:在EKF中,它帮助将非线性函数转换为近似的线性形式。 通过研究上述代码示例及其相关理论背景,可以加深对这两种滤波技术的理解,并学会如何将其应用于实际问题。务必仔细分析每个步骤的作用和相互之间的联系,从而更好地掌握这些复杂的算法工具。
  • GPSKF.rar - GPS--GPS-Kalman
    优质
    本资源提供了一种基于卡尔曼滤波算法的GPS信号处理方法,适用于GPS数据的精确定位和滤波。通过有效减少噪声干扰,增强导航系统的准确性与稳定性。 使用卡尔曼滤波对含有噪声的GPS定位数据进行处理。
  • 程序(EKF)
    优质
    扩展卡尔曼滤波程序(EKF)是一种非线性状态估计算法,通过线性化模型在每个时间步骤中预测和更新系统的状态,广泛应用于导航、控制等领域。 扩展卡尔曼滤波是一种非线性状态估计方法,在处理动态系统的实时跟踪与预测问题上具有重要应用价值。此算法通过在线性化模型的基础上使用标准的卡尔曼滤波技术,能够有效地对复杂系统进行近似估算,并广泛应用于导航、机器人学和信号处理等多个领域中。 在实际操作过程中,扩展卡尔曼滤波首先需要建立系统的状态方程与观测方程;然后利用雅可比矩阵将非线性模型在线性化。通过迭代更新步骤中的预测阶段以及修正阶段,该算法能够逐步逼近真实系统的行为模式,并给出最优估计结果。尽管存在一定的近似误差和计算量需求较高的问题,但其在工程实践中的灵活性与实用性仍然得到了广泛认可和支持。 总体而言,扩展卡尔曼滤波凭借其强大的适应能力和高效的处理机制,在众多需要进行状态跟踪及预测的应用场景中发挥着不可或缺的作用。