Advertisement

PEC球的时谐散射场计算:MATLAB代码实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究开发了用于计算PEC球在不同频率下电磁散射场的MATLAB程序。通过该代码可高效准确地模拟和分析电磁波与球体相互作用的现象,适用于雷达截面估算等领域。 代码计算了位于“cart”处的时谐散射场值,该值是由以原点为中心、半径为R的完美导电球(PEC)引起的。入射波的形式为E_x=exp(-ikz),其中(E_y=E_z=0)。此公式基于HC van de Hulst在《小颗粒的光散射》一书中第123页的内容,Dover出版社出版于1981年。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PECMATLAB
    优质
    本研究开发了用于计算PEC球在不同频率下电磁散射场的MATLAB程序。通过该代码可高效准确地模拟和分析电磁波与球体相互作用的现象,适用于雷达截面估算等领域。 代码计算了位于“cart”处的时谐散射场值,该值是由以原点为中心、半径为R的完美导电球(PEC)引起的。入射波的形式为E_x=exp(-ikz),其中(E_y=E_z=0)。此公式基于HC van de Hulst在《小颗粒的光散射》一书中第123页的内容,Dover出版社出版于1981年。
  • 无限长六边形PEC圆柱体——MATLAB开发
    优质
    本研究专注于使用MATLAB开发算法来计算无限长六边形截面等离激元(PEC)圆柱体的电磁散射问题,为纳米光子学和表面等离子体共振技术提供理论支持。 在这段代码里,每个边都被分成更小的部分,在这些部分上产生了感应电流。例如当入射场撞击圆柱体的“I”段时,会在该段产生一个相应的感应电流,并且这个电流会对所有其他分段产生的电场有影响,这种影响与它们之间的距离成反比关系。实际上,这段代码的功能是计算出在每一个其它部分上的感应电流强度,这些电流大小和散射场呈正相关。
  • fdtd1.rar__变换__matlab_
    优质
    本资源为MATLAB代码文件,用于进行基于FDTD方法的散射场计算及散射变换分析,并支持远场数据的提取与处理。 fdtd1.rar 包含计算二维电磁散射及近远场变换的代码,并求出雷达截面积。
  • 利用FDTD介质
    优质
    本研究采用时域有限差分法(FDTD)分析并计算了单个介质球在不同条件下的散射场特性,为电磁波与物质相互作用的研究提供理论依据。 用C语言求解介质球散射场的问题可以通过编写相应的算法来实现。首先需要定义介质球的物理参数以及入射波的相关特性,然后根据电磁学理论推导出散射场的数学表达式,并将其转化为计算机程序代码。 具体步骤包括: 1. 设定问题条件:确定介质球的材料属性(如折射率)、大小和周围环境中的波动情况。 2. 应用物理公式:利用麦克斯韦方程组等基本原理,计算出散射场在不同位置上的强度分布。 3. 编写C程序代码:将上述理论模型转化为可执行的编程语言指令。这通常涉及到复杂的数学运算和数值分析方法的应用。 完成这些步骤后就能得到一个能够模拟介质球散射现象的C语言程序了。
  • Mie-Matlab Mie资源
    优质
    本资源提供基于Matlab的Mie散射计算工具,包含精确模拟光与粒子相互作用所需的算法和代码,适用于科研和工程应用。 《MATLAB实现Mie散射计算详解》 Mie散射是一种重要的光学现象,它描述的是光在遇到微小粒子时产生的散射效果。这种理论广泛应用于大气科学、光学工程及材料科学等领域中。本段落将详细探讨如何使用MATLAB来实施和理解Mie散射的计算过程及相关知识点。 由德国物理学家Hans Mie于1908年提出的Mie散射理论,适用于任意大小与波长相比的情况下的球形粒子,并能精确预测单个球体对入射电磁波的散射特性。这些特性包括但不限于光强分布、消光系数以及前向和后向散射角中的极化等。 在MATLAB环境下实现Mie散射计算,通常需要经历以下步骤: 1. **输入参数设定**:首先确定粒子的折射率(n)与吸收系数(k),以及入射光线波长(λ)。这些变量决定了光如何被特定大小和性质的球体所影响。在提供的代码中会有设置这些值的具体函数。 2. **计算Mie系数**:这是基于Bessel函数及Struve函数来求解的一系列复数Mie系数(a_n和b_n)。MATLAB内置了`besselj`、`bessely`以及用于计算上述特殊数学功能的其他工具,如处理Struve函数。 3. **计算散射特性**:在得到Mie系数后,可以进一步推算出光强分布(I(θ))、消光效率(Q_ext)和其它相关参数。这些结果可以通过编程语言中的循环结构及数组操作来实现。 4. **极化分析**:对于偏振光源而言,还需要计算不同角度下的极化度P(θ),这涉及到Mie系数的比值关系。MATLAB强大的复数运算能力使得这种复杂的数学处理变得简单易行。 5. **可视化结果**:利用MATLAB的强大绘图功能(例如`plot`或`polar`函数),可以将计算得到的数据以图形形式展示出来,从而帮助用户更直观地理解散射特性。 在实际应用中,除了上述基本步骤外,代码可能还会包含错误处理、界面设计等高级功能。比如MATLAB自带的`mie`函数提供了完整的Mie散射解决方案,但根据特定需求编写自定义代码同样可行且有意义。 通过学习和掌握使用MATLAB进行Mie散射计算的方法,不仅可以加深对光学原理的理解,还能提高数值模拟及数据可视化的能力,在科学研究与工程实践中具有重要的应用价值。
  • MATLAB包(电磁)_MATLAB电磁_电磁
    优质
    本代码包提供一系列用于计算电磁散射问题的MATLAB函数,适用于研究与工程应用。涵盖不同目标形状及材料,支持快速准确的数值模拟和分析。 这是计算各种形状散射的程序,对研究电磁散射的同行很有用。
  • MieMatlab_Matlab_Mie_Mie
    优质
    本资源提供了一套用于计算与模拟光或其他电磁波在小颗粒上发生Mie散射现象的MATLAB源代码。它适用于研究大气光学、天文学及纳米技术等领域中粒子散射问题,为科研和教学提供了便捷工具。 Mie散射的Matlab源代码可以用于模拟光与粒子相互作用的情况。这种类型的代码通常包括计算特定条件下光线如何被不同大小和形状的颗粒散射的过程。编写或使用这样的代码可以帮助研究人员更好地理解大气光学、天文学以及纳米技术等领域中的现象。
  • Mie 电模拟:三维- MATLAB 开发
    优质
    本项目利用MATLAB开发了Mie电场模拟程序,专注于计算和展示三维球体在不同条件下的散射电场特性。 该程序不仅计算米氏散射系数,还同时计算入射电场、散射电场及内部电场,并将这些场表示为一系列对应于等间距phi值的笛卡尔平面或球体形式。此外,此代码会在多个波数和介电常数值上运行模拟。 该程序基于莎拉·帕奇(Sarah Patch)的作品进行开发,由Nick Walter进行了并行版本改写,可以将结果输出到.h5 或 .mat 文件中。 如需联系,请通过电子邮件与 Nick Walter 联系。
  • MATLAB粒子模拟-Mie建模: CELES
    优质
    本项目提供了一套基于MATLAB的Mie散射模拟工具,用于计算和分析光与颗粒物相互作用过程。通过CELES算法优化了复杂介质中的粒子散射仿真效率与精确度。 MATLAB模拟粒子散射代码CELES(“快船”的拉丁语)是基于CUDA加速的电磁散射实现,结合了MATLAB与CUDAMEX技术来执行多球体T矩阵方法(也称广义多粒子Mie法)。该软件主要针对大量球形散射物体的电动力学问题提供严格的解决方案。因此,它可用于研究光在宏观颗粒聚集体中的传播,并推导其整体传输性能。 使用CELES时,请按照以下方式引用:参考占位符[][] **特征** - CELES由MATLAB编写,旨在为用户提供一个友好的界面来配置和运行仿真。 - 其显著特点包括支持CUDA的NVIDIA GPU硬件上的大规模并行执行块对角预处理,从而加速迭代求解器的收敛速度。 - 使用查找表方法评估球形汉克尔函数,并提供丰富的输出(功率通量、近场及远场分布)。 - 支持高斯光束激发和GUI界面(实验性功能) **要求** 为了运行CELES,在系统上需要安装以下软件,除了MATLAB之外: 1. 兼容CUDA版本的MATLAB 2. 通过在MATLAB中执行命令`gpuDevice`可以检查所需的CUDA版本,并查看输出中的ToolkitVersion信息。
  • 使用MATLAB形粒子相函数
    优质
    本研究利用MATLAB软件精确计算球形粒子的散射相函数,探讨不同条件下的光散射特性,为光学分析提供理论依据。 使用MATLAB软件通过Mie理论计算球形粒子的散射相函数,并绘制出散射相函数与角度数之间的关系图。