Advertisement

四路直流电机驱动板的TB6612FNG电路设计方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目设计了一种基于TB6612FNG芯片的四路直流电机驱动电路方案,适用于机器人和电子制作领域。通过优化电路参数与布局,有效提升了系统的稳定性和效率。 这款直流电机驱动板能够同时控制四路直流电机或两路二相四线步进电机,并通过I2C接口连接到主控设备,实现对各电机的配置与操作。它采用STM8S105作为微处理器来解析上位机发送的指令,并根据计算结果转换为驱动信号,支持最高刷新频率为每秒一次。 该板使用了两颗TB6612FNG高性能电机驱动芯片,在静态状态下功耗仅为30mA;最大连续电流可达1.2A(在5V供电时),峰值电流则高达3.2A(同样是在5V电压下);支持的电机工作电源范围为4-12伏特。此外,该板还提供了四路独立舵机驱动接口,可以直接由主控设备控制。 技术规格如下: - 驱动控制器:STM8S105 - 控制电路供电电压:3.3V至5V(连接到FireBeetle的VCC) - 工作电流:30mA - 电机驱动芯片型号:TB6612FNG - 可支持的电机工作电源范围:4~12伏特 - 最大连续输出电流能力:每通道1.2安培(5V供电时);峰值电流可达3.2A(同样在5V电压下) - 通讯接口类型:I2C总线,设备地址为0x18 - 刷新频率上限:最高可达到每秒一次 工作模式包括: - 四路直流电机控制 - 双步进电机驱动支持 - 四个独立的舵机控制端口 外形尺寸及其他规格如下所示: - 尺寸大小:58mm x 29mm - 安装孔直径及位置:3.1毫米内径,6毫米外径;位于板子上的具体安装点为53mm x 24mm。 状态指示灯说明: - 状态一: LED闪烁(每秒约三次),表示等待初始化指令。 - 状态二: LED常亮, 表明已正常运行且准备接受新的控制命令。 - 状态三: LED熄灭,意味着存在通信问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TB6612FNG
    优质
    本项目设计了一种基于TB6612FNG芯片的四路直流电机驱动电路方案,适用于机器人和电子制作领域。通过优化电路参数与布局,有效提升了系统的稳定性和效率。 这款直流电机驱动板能够同时控制四路直流电机或两路二相四线步进电机,并通过I2C接口连接到主控设备,实现对各电机的配置与操作。它采用STM8S105作为微处理器来解析上位机发送的指令,并根据计算结果转换为驱动信号,支持最高刷新频率为每秒一次。 该板使用了两颗TB6612FNG高性能电机驱动芯片,在静态状态下功耗仅为30mA;最大连续电流可达1.2A(在5V供电时),峰值电流则高达3.2A(同样是在5V电压下);支持的电机工作电源范围为4-12伏特。此外,该板还提供了四路独立舵机驱动接口,可以直接由主控设备控制。 技术规格如下: - 驱动控制器:STM8S105 - 控制电路供电电压:3.3V至5V(连接到FireBeetle的VCC) - 工作电流:30mA - 电机驱动芯片型号:TB6612FNG - 可支持的电机工作电源范围:4~12伏特 - 最大连续输出电流能力:每通道1.2安培(5V供电时);峰值电流可达3.2A(同样在5V电压下) - 通讯接口类型:I2C总线,设备地址为0x18 - 刷新频率上限:最高可达到每秒一次 工作模式包括: - 四路直流电机控制 - 双步进电机驱动支持 - 四个独立的舵机控制端口 外形尺寸及其他规格如下所示: - 尺寸大小:58mm x 29mm - 安装孔直径及位置:3.1毫米内径,6毫米外径;位于板子上的具体安装点为53mm x 24mm。 状态指示灯说明: - 状态一: LED闪烁(每秒约三次),表示等待初始化指令。 - 状态二: LED常亮, 表明已正常运行且准备接受新的控制命令。 - 状态三: LED熄灭,意味着存在通信问题。
  • 与思
    优质
    本项目专注于直流电机驱动电路的设计理念和实施策略,探讨优化控制技术以提升效率及性能,适用于各类电子设备。 直流电机以其出色的调速性能在工业控制领域占据重要地位。它能够实现平滑且便捷的调速,并具有宽广的速度调节范围和强大的过载能力,适用于频繁启动、制动及反转操作。此外,在自动化系统的特殊运行需求方面也表现出色。 尽管市面上已有多种专为直流电机设计的驱动芯片供选择,但大部分产品仅针对小功率应用有效。对于大功率场景,则面临集成芯片成本高昂的问题。因此,本段落深入探讨了较大功率直流电机驱动电路的设计挑战,并基于25D60-24A器件开发了一款高性能的大功率驱动解决方案。 该方案不仅具备强大的驱动能力和出色的抗干扰性能,还拥有广阔的应用潜力。在H桥型互补对称式驱动电路设计中,可实现电流的反向流动和电机四象限运行,从而完成直流电动机正反转控制功能。此外,通过调节电枢电压或电阻来改变电机转速的方法被广泛采用。
  • 详解
    优质
    《直流电机驱动电路设计详解》一书深入浅出地介绍了直流电机的工作原理及各类驱动方法,并提供了详细的电路设计方案与实际应用案例。 直流电机是一种能够实现直流电能与机械能相互转换的旋转电机。当它作为电动机运行时,将电能转变为机械能;而作为发电机运行时,则把机械能转化为电能。 直流电机主要由定子和转子两大部分构成,并且两者之间有一定的气隙距离来保证它们能够正常工作。 其中,定子包括了机座、主磁极、换向磁极以及前后端盖与刷架等组件。主磁极是产生电磁场的关键部分,通常使用永磁体或带有直流励磁绕组的叠片铁心制成。 转子则由电枢、整流器(也称为换向器)和转轴组成。电枢包括了电枢铁心与嵌入其中的线圈,这些部件共同构成了电机的核心部分。电枢铁心是由硅钢片堆叠而成,并在外圆上均匀分布着齿槽以容纳绕组;而绕组则被安装在这些槽中。 换向器是一个用于机械整流的关键组件,由多个绝缘金属环或塑料制成的圆形结构组成。它对电机运行时的安全性和可靠性有着重要影响。
  • 较大功率H桥
    优质
    本设计旨在提出一种高效能的大功率直流电机H桥驱动电路方案,优化电流控制和散热性能,适用于多种工业自动化设备。 近期的一篇文章深入分析并讨论了较大功率直流电机驱动电路设计中的各种潜在问题,并基于25D60-24A 直流电机设计实现了一款新的驱动电路。该电路具备大功率输出及强大的抗干扰能力,拥有广阔的应用前景。 文章中提到的这款电路使用NMOS场效应管作为主要的功率输出元件,成功构建了较大规模直流电机H桥驱动系统,并对额定电压为24伏、电流为3.8A 的25D60-24A 直流电机实现了闭环控制。这种设计具有强大的抗干扰能力,在工业控制系统中显示出极高的适用性。 尽管市面上有许多半导体公司推出了专门用于直流电机的驱动芯片,但大多数仅适用于小功率应用场合。对于大功率需求的应用来说,这些集成芯片的价格通常非常高昂。
  • 讲解
    优质
    本课程详细介绍了直流电机驱动电路的设计原理与实践应用,涵盖控制策略、电路优化及常见问题解决方案。适合电子工程爱好者和技术人员学习参考。 直流电机是一种能够将直流电能转换成机械能或把机械能转化为直流电能的旋转设备。它主要用于实现直流电与机械运动之间的能量互换:作为电动机运行时,它可以将电能转变为动能;而作为发电机工作时,则可以将机械能转为电力。 构成方面,一台典型的直流电机包括定子和转子两大组件,并且两者之间存在一定的空气间隙以便于旋转。其中: - 定子部分主要包括机体、主磁极、换向磁极以及前后端盖等元件。主磁极是产生磁场的关键部件,通常由永磁体或装有励磁绕组的叠片铁心构成。 - 转子则是电机的核心动力来源之一,它包括电枢(含电枢铁芯和线圈)、换向器以及转轴等组件。电枢中的硅钢片堆叠形成一个框架,在其外部均匀排列着槽口,供绕组嵌入其中;而换向器则是一个机械整流装置,由许多绝缘的金属环组成并用夹具或塑料固定成圆柱形结构。 由此可见,直流电机的工作原理及其构造都相当复杂且精密。
  • L6201P模块及原理图
    优质
    本项目专注于设计L6201P直流电机驱动模块的电路方案,并详细绘制其工作原理图。通过优化控制策略,提高电机运行效率与稳定性。 L6201是一款采用多源BCD(双极型、CMOS、DMOS)技术的全控桥驱动器芯片,用于控制电机。该芯片将独立的DMOS场效应晶体管与CMOS及二极管集成在同一块芯片上,并通过模块化扩展技术实现了逻辑电路和功率级的优化。 L6201的主要功能特点包括: - 工作电压范围:控制信号电平为3.3~5.5V,驱动电机电压7.2~30V; - 能够驱动直流电机(适用于7.2至30伏特之间的电机); - 最大输出电流可达1A; - 输出功率最大值为20W; - 具备信号指示功能; - 支持转速调节,能够通过PWM脉宽调制平滑地调整速度,并且可以实现正反转控制; - 抗干扰能力强、具有续流保护特性; - 适用于单独驱动一台直流电机。 L6201特别适合用于飞思卡尔智能车的控制系统中。该驱动器的特点是电压降小,电流大,因此具备强大的驱动能力。
  • 微型DRV8301三相无刷-
    优质
    本项目介绍一种基于DRV8301芯片的微型三相无刷直流电机驱动电路设计方案,适用于小型电动设备。 此项目分享的是超小型DRV8301三相无刷直流电机驱动器解决方案,并提供了硬件与设计说明等相关资料的下载链接。该驱动器基于 DRV8301 前置驱动器和 CSD18533Q5A NextFET 功率 MOSFET,可提供高达 14A 的峰值电流及 10A 的连续电流输出。 此设计包含三个低侧电流感应放大器(两个在 DRV8301 内部,一个在其外部),并采用了一个 1.5A 降压转换器。该驱动级具备短路、过热和击穿等故障防护功能,并可通过 SPI 接口进行配置。 此设计特别适用于无传感器无刷控制技术和驱动级的设计选择。其主要特性包括: - 超小型(2.2 x 2.3 英寸)的完整无刷直流电机驱动级 - 支持 InstaSPIN-FOC 无传感器控制解决方案,提供电压和电流反馈功能。 - 集成有三个低侧电流感应放大器、六个功率 FET(电阻小于6.5mΩ),以及一个1.5A的降压转换器驱动级,并具备针对短路、过热、击穿及欠压等故障情况的全面保护措施。 - 使用 InstaSPIN-FOC 技术和 C2000 Piccolo F28027F 微控制器(MCU)。
  • 60W无刷(BLDC)器参考——
    优质
    本参考设计提供了一套完整的60W无刷直流电机驱动解决方案,涵盖硬件电路和软件控制策略,适用于多种工业自动化场景。 参考设计是一种 BLDC 电机控制器,它由单个12V(额定电压)电源供电,并能在典型汽车应用中存在的较大电压范围内工作。该板用于驱动60W范围内的电机,这要求电流为5安培。其尺寸和布局有助于评估驱动电子设备和固件,可以轻松访问各个测试点上的关键信号。通过使用3触点连接器或将电机相线焊接到板中的镀通孔中,可以连接各种各样的电机。为了防止在测试过程中由于电机故障而损坏电路板或工作台电源,在12VDC电源上安装了保险丝。 可以通过标准JTAG接口或者PWM输入和输出信号传送命令及获取电机状态信息。用户还可以通过JTAG接口对微控制器进行重新编程,从而允许针对不同应用的定制化设置。 此设计中重要的芯片包括: - CSD18501Q5A 功率 MOSFET - LM2903-Q1 汽车级双路差动比较器放大器 - LM4040-N-Q1 精密微功耗并联电压基准源 - TPD2E007 用于 AC 信号数据接口的 2 通道 ESD 保护阵列 ESD 保护二极管 - TPS3828-33-Q1 汽车级处理器监控电路电源管理
  • MOS管
    优质
    本项目专注于设计高效能MOS管驱动板电路方案,并提供详细的电路图。旨在优化电路性能,提升电力转换效率与稳定性。 标题中的“MOS管驱动板电路方案设计”指的是在电子工程领域内为高效控制金属-氧化物半导体场效应晶体管(MOSFET)的工作状态而专门设计的一种专用电路板。MOSFET是一种广泛使用的开关元件,尤其适用于电源转换、电机驱动以及其他需要大电流控制的应用场景中。 描述中的“实测可用”表明该驱动板经过实际测试验证其有效性,并能够在真实环境中正常工作。这通常意味着设计方案合理且元器件选择恰当,能够满足性能需求并具备一定的可靠性。 结合标签“mos驱动板”和“电路方案”,可以推测压缩包内可能包含关于如何设计及实现MOSFET驱动板的详细资料,包括但不限于电路原理图、设计方案以及PCB布局等信息。压缩包中的PNG格式图像文件很可能是展示具体硬件连接与布局的电路图或截图。而Driver_board.rar则很可能存储了CAD文件、元件清单、文档以及其他相关资源。 一个典型的MOS管驱动板设计会涉及以下关键知识点: 1. **MOSFET的选择**:根据应用需求选择合适的MOSFET,包括电流和电压等级以及开关速度等参数。 2. **驱动电路**:提供足够的栅极驱动电流以确保快速的开启与关闭,并防止过高栅极-源极电压导致损坏。 3. **保护电路**:如过压、欠压保护措施来预防电源异常时对MOSFET造成的损害。 4. **控制信号**:接收来自微控制器或其他逻辑电路发出的开关指令。 5. **隔离设计**:通常采用光电耦合器或数字隔离器确保控制部分与高电压驱动部分之间电气隔离,提高系统安全性。 6. **PCB布局优化**:良好的布线有助于减少电磁干扰并提升系统的稳定性。 7. **热管理方案**:考虑MOSFET和驱动电路的散热需求,并可能需要添加散热片或散热器来改善冷却效果。 8. **功率元件配置**:在开关电源中,适当的电感与滤波电容设置能够平滑输出电压并形成能量储存。 通过分析这些文件内容,可以学习到MOSFET驱动板的设计理念、各组件的功能以及它们如何协同工作以控制MOSFET。这有助于理解实际工程中的设计实践,并提升电子电路设计方案的能力。
  • L298PArduino详尽操作指南-
    优质
    本指南详细介绍如何使用L298P芯片配合Arduino控制直流电机,涵盖硬件连接、代码编写及调试技巧,提供完整电路图和实例解析。 L298P直流电机驱动板是Arduino项目中最基础且广泛使用的电机驱动器之一,拥有这款扩展板可以显著提升你的制作效率。它基于L298芯片设计,可以直接插入Arduino控制板使用,并提供四个控制端口以减少对数字端口的需求并简化程序编写。 此驱动板支持跳线选择供电方式,既可以由Arduino VIN供电也可以采用外接电源(最大电压可达35V)。其技术规格如下: - 工作电压范围:4.8~35V - 单路最大输出电流:2A - 最大耗散功率:25W (环境温度75℃) - 驱动形式:双H桥驱动 - 输入端口:数字10, 11, 12, 和 13 工作环境温度范围为 -25°C 至 +130°C,且模块尺寸为56x57mm。 L298P直流电机驱动板在小车等项目中有着广泛的应用。