Advertisement

基于Lyapunov理论的水下航行器轨迹跟踪模型预测控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究提出了一种基于Lyapunov稳定性理论的模型预测控制方法,专门用于优化水下航行器的轨迹跟踪性能,确保系统稳定性和鲁棒性。 本段落探讨了自主水下航行器(AUV)的轨迹跟踪控制问题,并提出了一种基于李亚普诺夫模型预测控制(Lyapunov-based Model Predictive Control, 简称LMPC)的新方法,旨在提升AUV在复杂环境中的性能。该框架能够利用在线优化技术来增强系统的追踪能力并处理诸如执行器饱和等实际约束问题。 文中详细介绍了如何通过非线性反步跟踪控制律构建收缩约束条件,确保闭环系统稳定,并提供了递归可行性的充分证明以及对吸引区域的明确描述。此外,本段落还探讨了LMPC框架中预测时域实施策略的应用,以提高系统的鲁棒性和适应能力。通过对Saab SeaEye Falcon型号AUV进行仿真测试验证了所提出的LMPC方法的有效性。 自主水下航行器(AUV)是海洋机器人领域的一项重要技术进步,在减少操作风险和成本方面展现出巨大潜力。本段落聚焦于如何通过优化控制策略来改善这类设备的性能,特别强调在设计控制器时考虑实际约束的重要性以及推力分配问题与LMPC框架结合的应用。 研究涵盖了多个关键主题: 1. AUV的基本概念及其应用。 2. 轨迹跟踪控制的概念和其重要性。 3. 李亚普诺夫稳定理论、模型预测控制(MPC)的原理及在AUV中的运用。 4. LMPC框架的设计过程,包括如何应对实际约束问题如执行器饱和等。 5. 推力分配策略的重要性及其与LMPC结合的方式。 6. 如何利用非线性反步跟踪控制律构建收缩约束条件以保证闭环系统的稳定性,并明确描述吸引区域的定义和作用范围。 7. 通过预测时域实施策略提高鲁棒性的方法论,以及这种方法对提升AUV追踪性能的意义。 最后,本段落还展示了在Saab SeaEye Falcon型号上进行仿真实验的结果,证明了LMPC框架的有效性。这些发现不仅具有重要的理论意义,在实际应用中也有广泛的前景和价值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Lyapunov
    优质
    本研究提出了一种基于Lyapunov稳定性理论的模型预测控制方法,专门用于优化水下航行器的轨迹跟踪性能,确保系统稳定性和鲁棒性。 本段落探讨了自主水下航行器(AUV)的轨迹跟踪控制问题,并提出了一种基于李亚普诺夫模型预测控制(Lyapunov-based Model Predictive Control, 简称LMPC)的新方法,旨在提升AUV在复杂环境中的性能。该框架能够利用在线优化技术来增强系统的追踪能力并处理诸如执行器饱和等实际约束问题。 文中详细介绍了如何通过非线性反步跟踪控制律构建收缩约束条件,确保闭环系统稳定,并提供了递归可行性的充分证明以及对吸引区域的明确描述。此外,本段落还探讨了LMPC框架中预测时域实施策略的应用,以提高系统的鲁棒性和适应能力。通过对Saab SeaEye Falcon型号AUV进行仿真测试验证了所提出的LMPC方法的有效性。 自主水下航行器(AUV)是海洋机器人领域的一项重要技术进步,在减少操作风险和成本方面展现出巨大潜力。本段落聚焦于如何通过优化控制策略来改善这类设备的性能,特别强调在设计控制器时考虑实际约束的重要性以及推力分配问题与LMPC框架结合的应用。 研究涵盖了多个关键主题: 1. AUV的基本概念及其应用。 2. 轨迹跟踪控制的概念和其重要性。 3. 李亚普诺夫稳定理论、模型预测控制(MPC)的原理及在AUV中的运用。 4. LMPC框架的设计过程,包括如何应对实际约束问题如执行器饱和等。 5. 推力分配策略的重要性及其与LMPC结合的方式。 6. 如何利用非线性反步跟踪控制律构建收缩约束条件以保证闭环系统的稳定性,并明确描述吸引区域的定义和作用范围。 7. 通过预测时域实施策略提高鲁棒性的方法论,以及这种方法对提升AUV追踪性能的意义。 最后,本段落还展示了在Saab SeaEye Falcon型号上进行仿真实验的结果,证明了LMPC框架的有效性。这些发现不仅具有重要的理论意义,在实际应用中也有广泛的前景和价值。
  • 欠驱动面舰艇
    优质
    本研究提出了一种基于模型预测控制(MPC)的方法,用于设计欠驱动水面舰艇的轨迹跟踪控制器。通过优化算法实时调整航行路径,确保舰艇高效准确地遵循预定路线,适用于复杂海况下的自主导航任务。 基于模型预测控制的欠驱动水面舰艇轨迹跟踪控制器设计了一种用于提升欠驱动水面舰艇性能的方法,该方法利用了模型预测控制技术来实现精确的轨迹跟踪。这种方法能够有效解决传统控制系统在面对复杂动态环境时遇到的问题,提高系统的响应速度和稳定性。
  • 车辆MATLAB仿真研究
    优质
    本研究运用MATLAB平台,探讨了模型预测控制技术在车辆轨迹跟踪中的应用,通过仿真分析验证其有效性和优越性。 本段落探讨了基于模型预测控制的无人驾驶车辆轨迹跟踪问题,并附有详细的MATLAB程序及建模过程。研究车辆转向的同学可以参考此内容。
  • chap2.rar_滑_滑__滑方法
    优质
    本资源为chap2.rar,包含有关滑模轨迹及轨迹跟踪控制的研究内容,重点介绍了滑模方法在实现精确轨迹跟踪中的应用。 基于滑模控制的机器人的轨迹跟踪控制仿真实验研究
  • Lyapunov欠驱动自主(AUV)设计.zip 计算机、自动化、电子信息等相关专业...
    优质
    本研究旨在利用Lyapunov稳定性理论为欠驱动自主水下航行器(AUV)设计一种有效的轨迹跟踪控制策略,适用于计算机、自动化及电子信息等专业的学术探索与工程实践。 基于 Lyapunov 的控制器设计用于欠驱动自主水下航行器(AUV)的轨迹跟踪 此项目源码来自个人课程设计、毕业设计或具体项目的开发成果,所有代码在上传前均已测试通过并成功运行,请放心下载使用。 项目说明: 1. 本资源内的项目代码均经过严格的功能验证和测试,在确保功能正常后才进行发布。 2. 此项目适用于计算机相关专业的在校学生(如计算机科学、人工智能、通信工程、自动化及电子信息等)、教师或企业员工,也适合初学者进阶学习。同时,此项目可作为毕业设计、课程设计或其他学术作业的参考和演示实例。 3. 若您具备一定的技术基础,可以在此代码的基础上进行修改以实现更多功能需求,并将其应用于毕业论文研究、课程实验任务及项目初期展示等场景中。 4. 仅供个人学习与交流使用,请勿用于商业用途。下载后请先阅读README文件(如有),以便更好地理解和利用此资源。 希望这些资料能对您的学习和工作带来帮助,感谢您的支持!
  • 船舶-MATLAB程序
    优质
    本项目通过MATLAB编写算法,实现对船舶航行路径的有效规划与精确跟踪。代码模拟了多种海况下航迹调整策略,为海上导航提供技术支持。 本段落使用MATLAB-Simulink进行仿真,并采用了两种简单的控制算法。仿真过程中加入了不确定干扰因素,研究的是典型的欠驱动控制系统问题。
  • (MPC)无人驾驶汽车Matlab代码
    优质
    本项目提供了一套基于模型预测控制(MPC)算法的无人驾驶汽车轨迹跟踪系统Matlab实现方案。代码实现了对车辆路径规划与实时调整,确保精确跟随预定路线。 基于模型预测(MPC)的无人驾驶汽车轨迹跟踪的MATLAB代码可以用于实现精确控制车辆沿着预定路径行驶的功能。这种技术通过优化算法来计算最优控制输入序列,确保车辆能够安全、高效地完成驾驶任务。在开发此类系统时,使用MATLAB和Simulink可以帮助工程师快速迭代设计,并进行详尽的仿真测试以验证系统的性能与稳定性。
  • 自主驾驶车辆路径规划及研究-路径规划、、MPC
    优质
    本文聚焦于自主驾驶车辆中的路径规划与轨迹跟踪控制技术,深入探讨了基于MPC(模型预测控制)的方法,旨在提升自动驾驶系统的安全性和效率。 为了减少道路突发事故并提高车辆通行效率,研究车辆的紧急避障技术以实现自主驾驶至关重要。基于车辆点质量模型,我们设计了非线性模型预测控制(MPC)路径规划器;同时,根据车辆动力学模型,我们也开发了线性时变MPC轨迹跟踪器。