Advertisement

基于MATLAB的抛物型偏微分方程数值解法程序

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本程序利用MATLAB编写,采用有限差分法求解抛物型偏微分方程的数值解。适用于初值问题和初边值问题,广泛应用于热传导、扩散等物理现象模拟研究中。 本资源利用MATLAB的实时脚本编程实现了抛物型偏微分方程数值求解,并以图-文-代码三者互相嵌套的形式详细介绍实现过程,直观易懂。内容包括对迭代误差的分析。适用于工科生和数学专业的学生等读者群体。涵盖算法有4点显式差分格式、4点隐式差分格式以及Crank-Nicolson格式。 感谢支持!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB
    优质
    本程序利用MATLAB编写,采用有限差分法求解抛物型偏微分方程的数值解。适用于初值问题和初边值问题,广泛应用于热传导、扩散等物理现象模拟研究中。 本资源利用MATLAB的实时脚本编程实现了抛物型偏微分方程数值求解,并以图-文-代码三者互相嵌套的形式详细介绍实现过程,直观易懂。内容包括对迭代误差的分析。适用于工科生和数学专业的学生等读者群体。涵盖算法有4点显式差分格式、4点隐式差分格式以及Crank-Nicolson格式。 感谢支持!
  • 示例——MATLAB
    优质
    本文章介绍如何使用MATLAB软件解决抛物型偏微分方程,并提供具体的实例演示和详细的代码实现,帮助读者掌握该类问题的数值解法。 求解抛物型方程的一个例子是考虑一个带有矩形孔的金属板上的热传导问题。假设这块板的左边保持在100 °C,而右边热量从板向环境空气定常流动;其他边及内孔边界则保持绝缘状态。初始时,整个板的温度为0 °C 。根据这些条件,可以将该物理现象概括成如下定解问题:金属板所在的区域顶点坐标分别为(-0.5,-0.8), (0.5,-0.8), (-0.5,0.8)和(0.5,0.8),而内边界(即矩形孔)的顶点坐标为(-0.05,-0.4), (-0.05, 0.4), (0.05,-0.4) 和(0.05, 0.4)。
  • MATLAB外推
    优质
    本研究利用MATLAB软件平台,采用外推法提高求解抛物型偏微分方程的精度和效率,适用于工程与科学中的热传导等问题。 外推法求解抛物型偏微分方程,在每一步进行校正。这是一个MATLAB程序,程序开头有对方程的注释。该代码由西北工业大学的同学自编,并已被多次下载,请放心使用。
  • MATLAB古典显式格式——以为例
    优质
    本研究利用MATLAB软件,探讨了古典显式格式在求解抛物型偏微分方程中的应用,提供了详细的数值解法和实例分析。 1. 使用古典显式格式求解一维热传导方程(即抛物型偏微分方程)。 2. 利用古典隐式格式解决一维热传导问题,这是一种抛物型偏微分方程的实例。 3. 采用Crank-Nicolson隐式方法来处理抛物型偏微分方程的问题求解。 4. 正方形区域内Dirichlet边值条件下Laplace方程的数值解析。 例如,在MATLAB环境下,可以使用以下函数进行古典显式格式计算: ```matlab function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % 此函数采用古典显式方法求解抛物型偏微分方程。 % % 方程形式为:u_t = C*u_xx,其中0 <= x <= uX 和 0 <= t <= uT % 初始条件是:u(x,0) = phi(x) % 边界条件设置如下:u(0,t)=psi1(t),以及 u(uX,t)=psi2(t) ``` 这里`U`, `x`, `t` 分别代表求解得到的数值解、空间坐标和时间向量;而`uX`,`uT`则表示整个计算区域的空间范围与时间跨度。其他参数如初值条件函数phi,边界条件函数 psi1 和 psi2 以及网格点数量M,N,C等均为该方法实施所需的具体输入数据或设定值。
  • MATLAB古典显式格式——以为例
    优质
    本研究利用MATLAB软件,探讨并实现了古典显式格式求解偏微分方程的方法,具体通过抛物型方程实例进行详细分析和验证。 1. 古典显式格式用于求解抛物型偏微分方程(一维热传导方程)。 2. 古典隐式格式用于求解抛物型偏微分方程(一维热传导方程)。 3. Crank-Nicolson隐式格式用于求解抛物型偏微分方程。 4. 正方形区域Laplace方程Dirichlet问题的求解方法。例如: ```matlab function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % 古典显式格式用于求解抛物型偏微分方程 % % [U x t] = PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % % 方程:u_t=C*u_xx 0 <= x <= uX, 0 <= t <= uT % 初值条件:u(x,0)=phi(x) % 边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t) ```
  • MATLAB
    优质
    本程序利用MATLAB编写,提供多种偏微分方程的高效数值求解方法,适用于科学计算与工程问题中的数学建模需求。 本段落介绍了椭圆型、双曲型和抛物型偏微分方程的数值解法,并详细编程实现了每种方程的多种常见数值解法。附件中使用MATLAB编程来实现这些算法。
  • MATLAB
    优质
    本程序利用MATLAB开发,旨在求解各类偏微分方程的数值解。它提供了灵活且高效的算法,适用于科学计算与工程问题分析。 本段落介绍了椭圆型、双曲型和抛物型偏微分方程的常用数值解法,并详细编程实现了每种方程的各种常见数值方法。附件中使用MATLAB编写了这些算法的代码。
  • MATLAB
    优质
    本项目采用MATLAB编程语言开发,专注于实现各种偏微分方程(PDE)的数值求解方法。通过多种算法和图形界面展示解决方案,旨在为科研与工程应用提供高效的计算工具。 本段落介绍了椭圆型、双曲型和抛物型偏微分方程的数值解法,并详细编程实现了每种类型的多种常见算法。所使用的程序代码是用MATLAB编写的。
  • 有限差
    优质
    本研究探讨了利用有限差分法解决抛物型偏微分方程的有效策略与算法实现,旨在提高数值计算精度和效率。 实验题目:考虑定解问题,方向步长取值为,网格比设定为。请分别使用以下三种格式计算的解,并进行结果比较与原因分析(精确解已知): 1. 古典显式格式; 2. 古典隐式格式; 3. Crank-Nicolson格式。 本实验包括以下几个部分: 1. 算法原理及流程图说明 2. 编写并注释程序代码 3. 实例计算过程展示 4. 讨论结果与结论分析
  • MATLAB双曲
    优质
    本程序利用MATLAB开发,专注于求解各类双曲型偏微分方程。通过高效算法实现精确数值解,适用于科研与工程领域中波动、振动等问题的研究。 本资源主要利用MATLAB的实时脚本编程实现了双曲型偏微分方程数值求解,并以图-文-代码三者互相嵌套的形式详细介绍实现过程,使内容一目了然。此外,还对数值解与解析解进行了作图对比分析。 该资源适用于工科生、数学专业等学习和研究领域的人群。 涵盖的算法包括迎风格式、Lax-Friedrichs 格式以及 Lax-Wendroff 格式。感谢大家的支持!