Advertisement

基于气隙电阻变化的单气隙局部放电仿真计算(2004年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究于2004年开展,专注于通过模拟分析探究单气隙中的局部放电现象与气隙电阻变化之间的关系,为高压电气设备绝缘设计提供理论依据。 为了研究气隙局部放电的不同击穿过程及不同时间过程的特性,我们采用了一种基于气隙电阻变化并修正了物理本质的单气隙局部放电仿真模型进行仿真研究。该研究涵盖了贯穿放电、沿面放电以及两者同时发生的三种不同的放电情况,分析了微秒级、亚纳秒级和纳秒级等不同击穿时间对放电波形的影响,并探讨了电子雪崩过程中的放电特征。结果表明,在各种不同的放电过程中,其对应的波形存在明显的差异性;通过控制电子雪崩可以得到与实际测量数据非常接近的仿真效果,这为后续的研究提供了重要的参考依据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿2004
    优质
    本研究于2004年开展,专注于通过模拟分析探究单气隙中的局部放电现象与气隙电阻变化之间的关系,为高压电气设备绝缘设计提供理论依据。 为了研究气隙局部放电的不同击穿过程及不同时间过程的特性,我们采用了一种基于气隙电阻变化并修正了物理本质的单气隙局部放电仿真模型进行仿真研究。该研究涵盖了贯穿放电、沿面放电以及两者同时发生的三种不同的放电情况,分析了微秒级、亚纳秒级和纳秒级等不同击穿时间对放电波形的影响,并探讨了电子雪崩过程中的放电特征。结果表明,在各种不同的放电过程中,其对应的波形存在明显的差异性;通过控制电子雪崩可以得到与实际测量数据非常接近的仿真效果,这为后续的研究提供了重要的参考依据。
  • 模拟仿
    优质
    本研究聚焦于通过计算机仿真技术模拟电气设备内部气隙处的局部放电现象,旨在深入探究其产生机理及发展过程,为提高电力系统运行的安全性和稳定性提供理论支持。 本段落基于电荷流体方程进行气隙间局部放电的模拟仿真,充分考虑了局部放电过程中空间电荷的发展情况,包括电子、正离子和负离子在强电场作用下的产生、迁移及复合过程。
  • 仿模型及绝缘分析
    优质
    本研究构建了气隙局部放电的仿真模型,并深入分析了不同条件下的绝缘电阻变化规律及其对电气设备安全运行的影响。 目前国内外的局部放电仿真模型难以准确反映实际物理过程的问题较为突出。该工程提出了一种单气隙局部放电仿真的修正方法,通过将气隙分为绝缘电阻与沿面绝缘电阻,并引入了半导电化处理以及电子雪崩效应的时间变化因素,在模拟中更精确地考虑了这些方面。这种改进使得仿真结果更加贴近实际的物理过程,尤其是对于试样中的气隙放电现象而言。相较于国外模型得到的锯齿形波形,该修正方法产生的局部放电信号形态有显著差异。
  • 压技术中SIMULINK仿
    优质
    本研究探讨了在高电压环境下气体间隙中发生的局部放电现象,并利用MATLAB SIMULINK工具进行建模与仿真分析。通过精确模拟,深入理解局部放电机理及其对电力系统的影响,为提高电气设备的稳定性和可靠性提供理论依据和技术支持。 这段文字描述了在高电压技术课程中的气隙局部放电Simulink仿真研究。该仿真验证了不同气隙(即电阻参数的不同)会导致不同的放电效果。
  • jufang3_zip_heregt2_matlab_分析__simulink在高压下应用
    优质
    本资源包提供基于MATLAB与Simulink的局部放电(PD)分析工具,专注于电气设备中气隙局部放电的研究及仿真,适用于高电压环境下的故障诊断和性能评估。 这段文字描述了在高电压技术课程中的一个MATLAB/Simulink仿真项目,该项目研究了气隙局部放电现象,并验证了不同电阻参数(代表不同的气隙)会导致不同的放电效果。
  • 压在大压介质研究
    优质
    本研究聚焦于大气压介质阻挡放电中气隙电压特性,探讨其对放电过程的影响及应用潜力,为相关技术发展提供理论支持。 在大气压氩气/空气介质阻挡放电条件下,我们首次研究了气隙电压随外加电压变化的特性。随着外加电压的增加,观察到放电丝结构演化过程依次为随机放电丝。
  • PCB布中爬距离与设定
    优质
    本文探讨了在PCB设计过程中,如何合理设置爬电距离和电气间隙以确保电路的安全性和可靠性,分析其重要性及影响因素。 本段落主要讲解关于PCB Layout中的爬电距离和电气间隙的确定方法。如果你正在学习这方面知识并遇到了困惑,可以快速阅读这篇文章来获取帮助。
  • PCB布中爬距离与确定方法
    优质
    本文章介绍了在PCB设计过程中,关于爬电距离和电气间隙的重要性及其影响因素,并提供了合理的确定方法。适合电子工程师参考学习。 本段落主要介绍在PCB设计中确定爬电距离与电气间隙的方法。
  • MATLAB中直流磁场仿负载源代码
    优质
    本段代码用于在MATLAB环境中仿真直流电机气隙磁场,提供详细的加载情况分析。通过该代码,用户可以深入研究不同负载条件下的磁场分布特性及其对电机性能的影响。 MATLAB负载直流电机气隙磁场仿真的源代码。
  • 有关及爬距离报告
    优质
    本设计报告深入探讨了电气产品中电气间隙与爬电距离的重要性及其影响因素,并提供了优化设计方案。 在电子设备设计过程中,电气间隙与爬电距离是至关重要的参数,它们直接关系到产品的安全性和稳定性。电气间隙是指两个带电部件间无绝缘材料的最短空气距离;而爬电距离则是沿绝缘表面测量的最短路径长度。这两者的设计目的是为了防止高电压、高温或污染环境下的安全事故,如电击和热击穿。 设计PCB时,必须遵循国际标准(例如IEC62109与UL840)规定的电气间隙及爬电距离要求。根据产品特性,确定其污染等级极为重要,因为这直接影响到所需的爬电距离数值。报告中提到的产品采用不灌胶方案,并且防护级别至少为IP65,因此初步定为三级污染环境;然而考虑到设备的密闭性特点,则最终调整至二级。 关于爬电距离的具体要求,在不同电压条件下会有所区别。例如:+12VHB节点与地之间的最小间隔应保持在3mm以上以确保足够的绝缘性能和设计精确度,从而保障产品的安全使用。 电气间隙方面的要求则需根据不同的瞬态过电压等级来定。报告中提到光伏侧的瞬时过压保护要求为2500伏特,对应的最低电气间隙是1.5毫米;而对于电网接口,则需要达到4000伏特的标准,相应的最小间距应设定在3.0毫米。 设计阶段还强调了通过软件工具自动检查爬电距离和电气间隙的重要性。这不仅提高了效率也确保了产品的合规性与安全性。 综上所述,在制定电气间隔及爬电距离时,需要全面考虑国际标准、实际操作环境(包括污染等级)、瞬态过电压防护需求以及绝缘类型等因素,并采用先进的设计工具进行实时监控以保证每个连接点的间距符合安全要求。这是一项既需精确计算又须细致规划的任务,旨在实现产品功能与安全保障之间的最佳平衡。