本资料提供2020年全国数学建模竞赛A题的解题策略和分析思路,涵盖问题解析、模型构建及求解方法,适用于参赛选手准备与学习。
在2020年数模国赛A题中,参赛者需要解决的是关于工业流程建模的问题。题目要求深入理解焊接区域温度变化的连续性和各个温区之间的差异,并合理假设物体导热过程,运用数学方法解决实际问题。
第一问要求基于已知传送带速度和表1中的温度趋势及时间条件,考虑整个焊接过程中温度曲线的变化情况。参赛者需设定不同温区间内导热的时间假设,并通过函数关系式表达温度变化的过程。利用MATLAB的CFtool工具拟合这些数据以确定具体的温度变化范围。
第二问要求逆向思考,在给定各温区的具体温度条件下,研究150°C至190°C期间的升温情况以及超过217°C的时间长度。参赛者需使用软件工具如MATLAB对不同温区间之间的时长进行拟合分析,以确保焊接过程的安全性和生产效率。
第三问关注如何最小化焊接过程中阴影部分面积的问题。这涉及温度变化趋势与传送速度优化,并通过积分原理计算阴影区域的大小,在给定温度限制条件下求解最大值问题。整个过程可以通过MATLAB软件完成,包括确定变量范围和使用导数找到最佳方案。
第四问则是在第三问基础上进一步优化炉温曲线,确保峰值温度两侧超过217°C的时间对称,并合理控制时间长度。参赛者可以单独或综合优化传送速度与温度区间等参数,通过比较不同方案的阴影面积大小来达到题目要求。
此题涉及的知识点包括工业流程建模、连续性分析、导热理论、数学建模(如MATLAB中的CFtool)、参数优化和积分计算等。参赛者需要具备扎实的数学基础,并能熟练使用计算机模拟工具,将理论知识应用于实际生产问题中。通过这些问题的研究,可以提高数据分析及模型构建的能力,在工程实践中得到应用。