Advertisement

高速ADC电源设计详解方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本手册深入解析了针对高速ADC应用的最佳电源设计方案,涵盖从基础理论到实践技巧的全面指导。 本段落介绍了了解高速ADC电源设计所需的各种测试测量方法。为了确定转换器对供电轨噪声的敏感度,并确认供电轨需要达到怎样的噪声水平才能使ADC实现预期性能,有两种测试非常有用:一种称为电源抑制比(PSRR),另一种是电源调制比(PSMR)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ADC
    优质
    本手册深入解析了针对高速ADC应用的最佳电源设计方案,涵盖从基础理论到实践技巧的全面指导。 本段落介绍了了解高速ADC电源设计所需的各种测试测量方法。为了确定转换器对供电轨噪声的敏感度,并确认供电轨需要达到怎样的噪声水平才能使ADC实现预期性能,有两种测试非常有用:一种称为电源抑制比(PSRR),另一种是电源调制比(PSMR)。
  • 3GSps ADC系统
    优质
    本方案提供了一种基于超高速3GSps ADC的系统设计方法,适用于高性能数据采集和信号处理应用。 设计包含3GSps超高速ADC的系统面临的主要挑战包括时钟驱动、优化模拟输入级以及构建高速数字接口。在这些环节中,时钟驱动尤为关键,因为它直接影响到ADC的性能表现。 首先,时钟抖动是影响ADC性能的重要因素之一,在高采样率下尤其显著。例如,在1.5GSps转换速率的情况下,当输入频率达到奈奎斯特速率(750MHz)时,对总系统抖动的要求会变得非常高。以孔径抖动为0.4ps的ADC083000B3000为例,尽管这是器件内部的标准值,但在实际应用中还需要考虑外部时钟源带来的额外频率成分影响。因此,在设计电路时推荐采用包含锁相环(PLL)和压控振荡器(VCO)的方案来确保在奈奎斯特输入频率下保持理想的信噪比。 其次,差分输入驱动器的设计对于增强系统的抗干扰能力至关重要。通过使用差分信号可以有效地抑制共模噪声,并提升ADC的谐波性能,从而改善动态范围表现。实践中,通常采用差分放大器将单端信号转换为差分形式,这样的设计允许直流偏置存在且易于调整增益水平。 此外,在高速数字接口方面也需要特别关注。随着数据率上升至1GSps或更高时,ADC的输出需要迅速存储或者传输给后续处理单元。这通常通过双数据速率(DDR)技术实现,该方法在保持原有带宽的同时降低了所需的时钟频率需求。利用FPGA内部的PLL或DLL等数字时钟管理器生成精确相位延迟信号可以确保DDR时序正确无误,并保证数据被可靠地捕获并存储于FIFO或者Block RAM中以备后续处理。 最后,电路板布局也是至关重要的环节之一。由于高速开关动作会产生高频噪声干扰问题,在设计过程中必须注意将模拟部分与数字部分进行物理隔离,减少相互之间的耦合效应;同时还要确保电源和接地层的合理配置来抑制模拟输入“地”上的电压波动现象从而提高转换精度。 综上所述,3GSps超高速ADC系统的设计需要综合考虑时钟源优化、差分输入驱动器的选择与布局策略等多个方面,并且每个细节都需要精心处理才能保证整个系统的最佳性能。
  • ADC策略
    优质
    本文探讨了针对高速模数转换器(ADC)优化电源设计的重要性及具体方法,旨在提升信号完整性与系统性能。 如今许多应用需要高速采样模数转换器(ADC)具有12位或以上的分辨率,以实现更精确的系统测量。然而,更高的分辨率也意味着系统对噪声更加敏感;每增加一位分辨率,例如从12位提高到13位,系统的噪声敏感度就会翻倍。因此,在设计ADC时,设计师必须关注一个常被忽视的噪声源——即电源噪音。由于ADC是一种非常灵敏的器件,为了达到数据手册中所规定的性能指标,所有输入端(包括模拟、时钟和电源等)都应得到同等重视。 当今电子行业的一个流行趋势是新产品的设计需要在降低成本的同时实现“绿色环保”。具体到便携式应用领域,则意味着要减少功耗、简化散热管理以及提高电源效率,并以此来延长电池的使用时间。然而,大多数ADC的设计都需要在这类要求下进行优化。
  • ADC指南
    优质
    《高速ADC电源指南》是一本专注于为设计高速模数转换器(ADC)供电方案的专业书籍,涵盖了从原理到实践应用的知识。适合电子工程师阅读参考。 为了使高速模数转换器(ADC)发挥最佳性能,必须为其提供干净的直流电源。高噪声电源会导致信噪比(SNR)下降,并且可能在ADC输出中产生不良杂散成分。本段落将介绍有关ADC电源域和灵敏度的基础知识,并讨论为高速ADC供电的基本原则。 现代大多数高速模数转换器至少有两个独立的电源领域:模拟电源(AVDD) 和数字与输出驱动器电源(DRVDD)。某些转换器还可能包含额外的模拟电源,通常需要作为本段落中提到的AVDD之外的一个单独电源处理。分离的模拟和数字电源可以防止来自数字开关噪声(特别是由输出驱动器产生的)对ADC模拟端采样及信号处理的影响。根据不同的采样信号类型,这种数字输出开关噪声可能会变得显著。
  • ADC用采样保持
    优质
    本简介探讨了针对高速模数转换器(ADC)优化的采样保持电路的设计策略。通过分析现有技术瓶颈,提出创新方案以提升信号保真度和系统响应速度,旨在满足日益增长的数据采集需求。 设计了一种用于流水线模数转换器(pipelined ADC)前端的采样保持电路。该电路采用电容翻转型结构,并配备了一个增益达到100 dB、单位增益带宽为1 GHz的全差分自举跨导运算放大器(OTA)。在TSMC 0.25μm CMOS工艺下,使用2.5 V电源电压时,该电路能在4 ns内稳定到最终值的0.05%以内。通过仿真优化后,此采样保持电路适用于10位、100 MS/s的流水线ADC中。
  • TJA1057:CAN收发器的
    优质
    TJA1057是一款高性能的高速CAN收发器,适用于汽车和工业控制领域。本文将详细介绍其电路设计方案及其优势。 TJA1057属于Mantis系列高速CAN收发器的一部分,在控制器局域网(CAN)协议控制器与物理双线式总线之间提供接口。该设备专为汽车行业的高速应用设计,能够支持微控制器中的CAN协议控制器发送和接收差分信号。 相比恩智浦早期的TJA1050等产品,TJA1057在电磁兼容性(EMC)方面表现出色,并且优化了用于12伏特汽车系统。当断电时,它能够展示出理想的无源性能以满足CAN总线的要求。VIO引脚选项允许直接连接3.3 V和5 V供电的微控制器。 TJA1057符合ISO 11898-2:2003标准,并且为即将发布的更新版本做好了准备,包括支持高达1Mbit/s的数据传输速率(针对型号TJA1057T)。此外,在CAN FD快速相位下,即使数据速率达到5 Mbit/s时也能实现可靠的通信。这些特性使它成为仅需要使用基本CAN功能的HS-CAN网络的理想选择。 产品特点包括: - 完全符合ISO 11898-2:2003标准 - 经过优化用于12 V汽车系统 - 满足“汽车应用中的LIN、CAN和FlexRay接口硬件需求”的EMC性能要求(版本1.3) - 支持直接连接至3.3V及5V供电微控制器的VIO选项 TJA1057获得AEC-Q100认证,采用环保材料制造,并提供SO8封装与无铅HVSON8封装选择。所有电源条件下的功能行为均可预测,在断电时自动脱离总线以保护数据传输。 此外,该收发器还具备: - TXD和S输入针脚的内部偏置保护 - 总线针脚高ESD处理能力(IEC 8kV及HBM) - 在汽车环境中提供瞬态防护功能 - VCC与VIO欠压检测以及过热保护 TJA1057GT(/3)/TJA1057GTK(/3)型号提供了额外的时序保证,支持高达5Mbit/s的数据速率,并改善了TXD至RXD传播延迟(210ns)。
  • 智能小车模块
    优质
    本设计详细介绍了适用于智能小车的高效电源模块方案,涵盖硬件选型、电路设计及软件控制策略,旨在提高能源利用率和系统稳定性。 电源模块方案如下: 方案1:使用6节1.5V干电池供电,总电压为9V用于给直流电机供电,然后通过7805稳压器将电压降至适合单片机系统和其他芯片工作的水平。 方案2:采用3个4.2V可充电式锂电池串联连接以获得总共12.6V的输出,先用该电源驱动直流电机,并且使用7809进行必要的电压调整后,再通过7805稳压器为单片机系统及其他芯片供电。 方案3:采用一个12V蓄电池作为初始电源给直流电机提供所需电力;之后同样需要经过降压和稳压处理以适应单片机系统和其他电子元件的使用需求。
  • 线性直流稳压
    优质
    本手册详尽解析线性直流稳压电源电路的设计原理与实践应用,涵盖核心组件选型、电路图绘制及调试技巧,为工程师提供全面指导。 线性稳压电源是指调整管在工作于线性状态下的直流稳压电源,它是电子系统中的一个重要组成部分,主要功能是为各种电路提供稳定的电能供应。由于大多数电子设备需要稳定电压的直流电源来供电,因此线性稳压电源被广泛应用于各类电子装置中,并且即便新型的稳压技术不断涌现,它依然不可或缺。 一、线性直流稳压电源的工作原理 1. 普通电源的工作方式 随着现代电子科技的日新月异发展,各种应用领域的电子产品种类和数量也在迅速增加。这些设备与人们日常工作生活的关联越来越紧密。而所有类型的电子装置都需要安全可靠的电力供应来正常运作。
  • 622Mbit/s激光收发
    优质
    本项目提出了一种实现622Mbit/s高速数据传输的激光收发电路设计方案,旨在优化信号处理与稳定性,适用于高速通信系统。 我们设计并实现了激光发射与接收电路模块,每个模块主要由激光收发电路、数据处理器、存储器和视频转换电路四部分组成,具有体积小、使用灵活的特点。重点介绍了622Mbit/s高速激光收发电路的设计,并研究实现了一种对视频数据流的时序控制方法,包括有效图像数据的提取与重新组合以及存储等步骤。我们采用曼彻斯特编码以确保接收信号和恢复时钟的稳定性。在使用一组简易光学天线的情况下,理论通信距离超过6公里,在实验中成功完成了大于100米的距离传输测试。结果表明:该系统能够稳定地传输图像,并适用于地面短距离高速接入等应用场景,为无线激光通信技术的研究提供了有效的实验平台。
  • STM8S103驱动的USB移动-
    优质
    本设计详述了基于STM8S103微控制器的USB移动电源方案,包括硬件电路和软件实现,提供高效能与安全性的充电解决方案。 前言:或许大家对Vicor公司有些许陌生感,这主要是因为它一直以来都保持着低调的形象。成立于1981年的美国电源厂商Vicor专注于电源技术的研发,在企业级和高性能计算机、电信与网络基础设施、工业设备及自动化系统、交通、航空以及国防电子等多个领域都有广泛应用。总之,Vicor公司主要致力于设计各类电源模块。 接下来我们来介绍一下基于STM8S103的USB移动电源的设计过程:这款移动电源使用了STM8S103F103TSSOP封装作为主控芯片,并通过5V供电接口与外部设备连接。硬件电路采用LTC1700升压转换器、MAX1879充电管理模块以及S8261锂电池保护装置,其中LTC1700的开关管由SI7686和FDS4435组成;用于锂电保护的晶体管型号为A04410,而TPC8111则被用作充电控制及单键开机/关机功能。该移动电源配备有四颗2700mAh容量的锂电池(总能量达10800mAh),工作电压3.7V。 整个硬件设计包含两大部分:主控板和LED显示电路,具体实现的功能如下: - 单按键操作即可开机或关机 - 当电池电量低于3.58伏时自动切断输出电源 - 在无负载状态或者电池电压不足的情况下,在等待20秒后关闭输出端口 - 持续不进行任何操作五秒钟之后,会自动熄灭显示屏以节省电力资源。 此外还增加了温度监控功能:通过100K热敏电阻测量环境温度并显示结果;支持自定义定时关机。 以上就是该USB移动电源的设计概览。