Advertisement

无人遥控水下机器人电源设计分享及资料解析-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本内容深入探讨了专为无人遥控水下机器人设计的电源系统,涵盖全面的电路设计方案与技术细节,并提供详实的参考资料。 无人遥控水下机器人主要分为有缆遥控水下机器人(ROV)和无缆遥控水下机器人(AUV)。其中,ROV通过线缆与水面进行控制连接,并且携带推进器、电视摄像机、机械手及其他作业工具,在三维水域中运动。为了减少长距离电缆传输中的损耗,要求输入电压较高,通常为300至400伏特。 传统的砖模块电源很难满足高效率和小体积的需求以适应ROV的特殊需要。为此,Vicor公司提供了一套解决方案来应对这些挑战。对于输入电压波动较大的应用, Vicor采用DCM隔离式稳压转换器,它可以在宽范围未稳化的输入下运行,并生成稳定的输出。 具体而言,DCM300P480x500A40模块的特点包括: - 宽广的输入电压区间(200至420伏特) - 高功率密度:1,032瓦/立方英寸 - 尺寸为47.91毫米 x 22.8毫米 x 7.26毫米,重量仅为29.2克 - 单模块最大输出电流可达10.5安培(对应500瓦功率),最多可并联八颗以支持千瓦级的总输出 - 利用Vicor专利ChiP封装技术实现高效散热与体积优化 对于输入电压稳定在380至400伏特的应用场合,Vicor采用高压BCM系列转换器。其中一款产品——BCM400P500T1K8A30具有以下特点: - 单模块最大输出功率可达1,750瓦 - 高达2,735瓦/立方英寸的功率密度,尺寸为63.34毫米 x 22.8毫米 x 7.26毫米 - 轻量设计仅重41克 - 稳定输出电压可达97.5%效率 Vicor提供的BCM产品系列为线缆机器人供电方案提供了一种高密度、小体积的解决方案,代表了业界最高功率密度的标准。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -
    优质
    本内容深入探讨了专为无人遥控水下机器人设计的电源系统,涵盖全面的电路设计方案与技术细节,并提供详实的参考资料。 无人遥控水下机器人主要分为有缆遥控水下机器人(ROV)和无缆遥控水下机器人(AUV)。其中,ROV通过线缆与水面进行控制连接,并且携带推进器、电视摄像机、机械手及其他作业工具,在三维水域中运动。为了减少长距离电缆传输中的损耗,要求输入电压较高,通常为300至400伏特。 传统的砖模块电源很难满足高效率和小体积的需求以适应ROV的特殊需要。为此,Vicor公司提供了一套解决方案来应对这些挑战。对于输入电压波动较大的应用, Vicor采用DCM隔离式稳压转换器,它可以在宽范围未稳化的输入下运行,并生成稳定的输出。 具体而言,DCM300P480x500A40模块的特点包括: - 宽广的输入电压区间(200至420伏特) - 高功率密度:1,032瓦/立方英寸 - 尺寸为47.91毫米 x 22.8毫米 x 7.26毫米,重量仅为29.2克 - 单模块最大输出电流可达10.5安培(对应500瓦功率),最多可并联八颗以支持千瓦级的总输出 - 利用Vicor专利ChiP封装技术实现高效散热与体积优化 对于输入电压稳定在380至400伏特的应用场合,Vicor采用高压BCM系列转换器。其中一款产品——BCM400P500T1K8A30具有以下特点: - 单模块最大输出功率可达1,750瓦 - 高达2,735瓦/立方英寸的功率密度,尺寸为63.34毫米 x 22.8毫米 x 7.26毫米 - 轻量设计仅重41克 - 稳定输出电压可达97.5%效率 Vicor提供的BCM产品系列为线缆机器人供电方案提供了一种高密度、小体积的解决方案,代表了业界最高功率密度的标准。
  • -
    优质
    本文章详细介绍了一种为水下电缆机器人设计的创新供电方案及电路设计方案。通过优化电源管理和线路布局,确保了设备在水下的稳定运行和高效作业。 Vicor公司专注于设计、制造并销售模块化电源设备,并且在工业控制领域提供新一代的高功率密度及高可靠性的电源晶片产品。无人遥控水下机器人主要分为有缆遥控水下机器人(ROV)和无缆遥控水下机器人(AUV)。其中,ROV通过水面进行操控并且配备推进器、电视摄像机以及机械手等作业工具,在三维空间内活动,并由水面提供能源。 为了减少线缆上的损耗,需要将电流减小到最低限度。这意味着ROV的输入电压应尽可能高,理想情况下应在300至400伏之间。以目前DC48V和(3000-4000)W的需求为例,传统的砖模块电源难以满足体积小巧及效率高的要求。 针对水下机器人在体积、效率以及大功率方面的特殊需求,Vicor提供了有效的解决方案。对于输入电压波动较大的应用场合,Vicor的DCM是一个隔离式且可调压的直流-直流转换器,在未稳压宽范围输入条件下运行,并产生一个稳定的输出。通过高频零电压开关(ZVS)技术,DCM在整个工作范围内保持高效率。 此外,模块化的DCM和下游产品支持高效配电,为非稳压电源至负载提供卓越性能及连接性。例如:DCM300P480x500A40具有宽输入电压范围(200-420V)、17.9瓦/立方英寸的高功率密度、单颗最大输出电流为10.5安培,以及多模块并联支持千瓦级输出的特点。利用独特的封装技术,DCM可以实现灵活且高效的热管理方案。 对于输入电压稳定在380至400伏的应用场合,Vicor提供BCM(Bus Converter)系列产品。以高压384伏为输入,并产生稳定的48伏输出的BCM产品具有业界最高的功率密度和卓越效率。例如:BCM400P500T1K8A30的最大单颗输出功率可达1750瓦,其尺寸仅为63.3毫米*22.8毫米*7.26毫米且重量仅41克。 此外,这种产品采用SAC正弦波振幅转换技术,并通过ZVS/ZCS变换有效减少损耗。BCM系列产品同样采用了Vicor的ChiP封装技术,在上下表面和引脚上都添加了导热绝缘材料以实现高效的散热性能。其独特的设计使这些模块能够适应各种温度环境,且在适当的散热条件下可于85摄氏度环境下满载运行而不需降额。 最后,Vicor还开发了一种基于VIA(Vicor Integrated Adaptor)工艺的BCM产品,这种产品的特点是将BCM封装在一个四面铜壳内,并配有前端和后端滤波及接口电路,形成一个完整的适配器。例如:BCM4414VD1E5135T02不仅集成了滤波电路、安装方式灵活多样(PCB或机箱),而且由于其超常的散热性能,在降额方面表现突出。 总之,Vicor的BCM产品为线缆机器人供电方案提供了一个高密度且体积小巧的解决方案,代表了业界最高的功率密度。
  • 六足用24驱动板——
    优质
    本资料提供了一种采用24路舵机控制器驱动板的六足机器人电路设计方案,详细介绍了硬件配置与连接方式。 可能感兴趣的项目设计:备战2017电赛的开源8路舵机控制器驱动板。 应用场景:该控制器主要应用于以模拟、数字舵机为关节的电子机械结构电气控制,例如双足机器人、六足机器人、机器狗、搏击机器人和竞步机器人等。此外还有24路舵机控制器驱动板实物展示。 其特性包括: - 24路周期20ms、500-2500us高精度宽度可调方波输出,强制高低电平输出,并可以设置上电初始位置。 - 配备32位高性能MCU主控器和动力电源电压检测及低压报警功能。 - 提供三个通用GPIO接口,支持读写操作并兼容Servo bus协议。 - 具有USB转串行以及TTL串行接口,可进行固件升级,并不定期发布更新版本的固件。 此外还有: - 开源设计和基本驱动程序开源,满足用户的个人开发需求; - 支持蓝牙透传模块HC-05/HC-06连接至电脑; - 高达4M bits FLASH存储多达17500条指令。 该控制器系列还提供了图形化编程界面WAY STUDIO,支持仿真模型实时位置显示和时间线组织方式,并且动作设计更加灵活。同时还有安卓系统控制台软件Way Pocket通过蓝牙透传模块HC-05/HC-06实现无线控制功能。 此外,此版本为“无极”舵机控制器系列成员之一,性能稳定可靠、扩展能力强;并附带丰富的视频指导教程以帮助用户快速入门使用。
  • WiFi小车——基于手APP的
    优质
    本项目提供一款基于手机APP控制的WiFi遥控小车的设计资料,包括详细的电路图和代码,旨在帮助电子爱好者快速入门并实现无线控制功能。 WiFi遥控小车使用说明: 本例程采用ESP8266 WiFi模块与STM32串口连接,并提供AT指令封装库以实现通信功能。 1. 硬件部分:根据WiFi模块丝印图进行引脚连接,具体硬件连接方法请参考相关文档或示意图。 2. 手机APP部分: - 使用ITEAD WiFi调试软件安装完成后打开界面并点击“Set up”进入设置页面。 - 设置端口(默认为8080)和指令协议:停止、前进、后退、左转、右转,具体定义可以在工程文件interface.h中查看。 3. STM32软件部分: - 打开工程文件“wifi遥控小车”,在main.c文件内修改HOST_NAME(手机IP)、HOST_PORT(端口)以及SSID和PSD等信息。 - 修改完成后重新编译并下载到STM32,复位后程序会自动连接手机服务实现TCP/IP通信。成功连接时会在串口调试助手显示相关信息。 完成以上步骤之后,在手机界面点击相应按键即可操作小车运行。
  • 智能饮代码
    优质
    本项目提供了一套智能饮水机控制电路的设计方案和配套源代码。通过先进的电子技术和编程语言实现对饮水机温度、水量等参数的智能化管理与监控,致力于提升用户体验和设备性能。详情请查阅相关资料获取具体实施方案和技术细节。 智能饮水机控制器功能概要:该智能饮水机采用瑞萨16位MCU R7F0C009A2单片机作为主控制芯片,通过I/O端口、A/D输入及TAU等功能模块实现LCD模块和饮水机工作状态的控制。六个用户按键用于操作饮水机的工作模式,具体包括:开/关、童锁/设置、水量调节、消毒/+、制冷/夜灯以及热水功能。LCD显示的信息内容涵盖时间、热水状态、消毒情况、制冷状况、童锁设定、水位信息及夜光指示等各项状态。 智能饮水机硬件配置框图和控制电路截图展示了系统的具体架构,源码截图则提供了软件实现的细节。
  • 坦克循迹、代码论文等)-
    优质
    本资料详细介绍了坦克循迹机器人的电路设计方案,包括硬件选型、线路布局和元件连接图。适合电子工程与机器人技术爱好者参考学习。 超全单片机智能小车程序资料+坦克循迹红外遥控+原理图(约260M),无线智能小车视频演示:包括附件内容截图、坦克循迹控制板截图以及基于51单片机的智能小车接线方法。
  • STM32的示波-
    优质
    本资源提供基于STM32微控制器设计的数字示波器详细资料与电路设计方案,涵盖硬件选型、原理图及PCB布局等信息。适合电子爱好者和技术工程师参考学习。 设计指标如下: 主控:STM32F103ZET6 液晶屏:4.3寸TFT 480×272像素、65K彩色LCD显示屏 FSMCAD:采用12位ADC,采样速率为1MHz;最高实时取样率可达1Msps。配备8Bits取样缓冲器,深度为5K。 垂直灵敏度设置包括5V、1V、500mV, 200mV, 100mV, 50mV, 20mV和10mV;水平时基范围涵盖从2S到1uS的多个选项,以适应不同应用场景。 输入阻抗不小于1MΩ。最高可承受30伏峰峰值电压,并支持AC/DC耦合方式切换。 触发功能包括自动、常规及单次三种模式,同时具备上升沿或下降沿触发的能力;可以精确计算频率、周期、占空比以及交流峰-峰值和平均值等参数的触发电平。该电平的位置可以根据需要进行调整,并且能够调节触发时基位置以匹配不同的测试需求。 此外还提供了RUN/STOP功能,便于用户在实验过程中灵活控制数据采集过程。
  • 图纸说明
    优质
    本资料详尽介绍了水下机器人电路的设计图纸及其技术规范和设计思路。通过图文并茂的方式,清晰阐述了关键部件与线路布局,为工程实施提供了坚实的技术支持。 水下机器人全套设计非常经典,包含全套原理图等资料。
  • 软件的
    优质
    本研究旨在设计一款用于遥控水下机器人的操控软件,通过优化用户界面和增加智能算法,提升操作便捷性和任务执行效率,以适应复杂多变的水下环境。 为了提高遥控水下机器人的用户操作效率及人机交互水平,我们摒弃了以往基于MFC平台的开发方式,并采用Qt平台进行用户操作软件的设计。设计目标不再局限于水下运动与实时监控,而是通过直接控制、远程控制、协作控制和人机交互来处理各种协作关系。 在软件结构方面,我们将用户操作软件分解为底层控制、科学计算、人机交互、单机交互、本体控制以及视频监控等模块。同时讨论了串口通信、网络通信、实时监控及界面显示的软件设计过程。 通过泳池环境测试验证了该设计方案的有效性,证明所提出的方案具有可行性。
  • APP操,WiFi远程灯光,含与APP
    优质
    本项目介绍一款可通过手机APP和WiFi实现远程控制的智能灯光系统,包含详细的硬件电路图、下位机代码以及用户界面友好的手机应用程序源码。 所需硬件:STC15W系列单片机(有串口即可)及ESP8266 WiFi模块。 连接步骤如下: 1. 找开手机WiFi,搜索名为“WIFI”的热点,并输入密码“1234567890”,成功连接后。 2. 打开本手机APP,点击登录按钮。跳出提示显示已成功连接,然后会自动跳转到控制界面。 3. 轻点一下“开关按钮”,灯会被打开或关闭。同时模块会向手机终端返回状态信息(如:“灯亮”)。 硬件连接及注意事项: 1. 单片机型号为STC15W408AS,其他同系列也可以使用;要求有P2.4口。 2. 供电电压为3.3V。因为ESP8266的额定工作电压是3.3V。单片机的P3.0和P3.1(即串行通信线)分别与WiFi模块的相应引脚相连,注意不要接反;其余连接请参考ESP8266的数据手册。 3. 单片机的P2.4口用于控制灯的状态:可直接接入三极管基极或通过继电器来驱动交流电(AC 220V)供电的灯具。需要注意的是,点亮时该IO端输出低电平信号(即0),关闭状态则为高电平信号(即1)。 4. WiFi模块连接信息:WiFi名称“WIFI”,密码“1234567890”。因仅为实验用途,请勿更改APP内相关设置;并且通信数据未经校验,故不建议用于商业应用。