Advertisement

视觉里程估算器

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
视觉里程估算器是一种利用计算机视觉技术来估计机器人或车辆相对于初始位置移动距离和姿态变化的算法系统。通过分析连续图像帧间的特征点变化,该系统能够实现无需外部传感器的情况下进行自主定位与导航,是SLAM(Simultaneous Localization and Mapping)中的关键组成部分之一。 《视觉SLAM十四讲》的高清PDF资源目前只包含了视觉里程计部分。对于专注于研究SLAM和VIO领域的学者而言,这是一份非常有价值的参考资料。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    视觉里程估算器是一种通过分析摄像头捕捉到的连续图像序列来估计机器人或车辆位移的技术,广泛应用于无人驾驶和增强现实领域。 视觉里程计(Visual Odometry, 简称VO)是计算机视觉领域中的关键技术之一,主要用来估计摄像头在连续图像帧之间的运动轨迹。这项技术广泛应用于无人驾驶、机器人导航、无人机飞行以及虚拟现实(VR)、增强现实(AR)等领域中。通过分析由摄像设备捕获的连续图像序列,可以实时估算该设备的位置和姿态变化,无需依赖GPS或其它外部定位系统。 视觉里程计的核心在于图像处理与几何重建。其工作流程大致分为以下步骤: 1. 图像预处理:进行去噪、校正镜头畸变以及灰度化等操作以提高后续特征检测的准确性。 2. 特征检测和匹配:通过SIFT、SURF或ORB算法在图片中寻找关键点,并基于这些关键点建立不同帧间的对应关系。 3. 空间几何关系计算:利用RANSAC算法去除错误匹配,构建本质矩阵或法向量矩阵以求解相对姿态(旋转和平移)。 4. 运动估计与平滑处理:通过对连续图像的相对姿态进行积分来获取全局运动轨迹。为了减少累积误差,通常使用如BA(束调整)等方法对路径进行回环检测和闭环修正。 5. 后处理优化:通过数据关联、滤波等方式进一步改善初步估算出的轨迹,提升其精度与稳定性。 6. 结构重建:基于连续获取到的位置信息可实现三维环境重构。这可以通过立体视觉或结构光技术获得深度信息,并构建密集型点云。 然而,视觉里程计面临诸多挑战,包括光照变化、动态物体以及纹理不足区域等问题会影响特征检测和匹配的准确性从而影响定位效果。为解决这些问题,研究人员提出了多种改进方案如多传感器融合(IMU)、引入深度学习方法等以提高其鲁棒性和精度。 在实际应用中,视觉里程计往往包含多个模块:图像处理、特征提取、匹配、姿态估计及后处理优化等功能的实现代码通常会一起提供。这些资料有助于开发者深入理解技术原理并将其应用于具体项目当中。同时,readme文件一般包含项目的简介以及编译运行指南等内容,对于初学者而言是十分重要的参考资料。
  • 优质
    视觉里程估算器是一种利用计算机视觉技术来估计机器人或车辆相对于初始位置移动距离和姿态变化的算法系统。通过分析连续图像帧间的特征点变化,该系统能够实现无需外部传感器的情况下进行自主定位与导航,是SLAM(Simultaneous Localization and Mapping)中的关键组成部分之一。 《视觉SLAM十四讲》的高清PDF资源目前只包含了视觉里程计部分。对于专注于研究SLAM和VIO领域的学者而言,这是一份非常有价值的参考资料。
  • IMU-计-Kalman滤波-MATLAB
    优质
    本项目运用MATLAB开发了结合惯性测量单元(IMU)与视觉信息的里程计系统,并引入卡尔曼滤波器优化状态估计,提升导航精度。 【达摩老生出品,必属精品】资源名:imu_视觉里程计_kalman滤波器_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后遇到问题可以联系我进行指导或者更换。 适合人群: 新手及有一定经验的开发人员
  • 与机
    优质
    计算机视觉与机器视觉是人工智能领域的重要分支,专注于赋予机器像人类一样的视觉感知能力。通过图像和视频分析,实现物体识别、场景理解等功能,在自动驾驶、安全监控等领域有广泛应用。 机器视觉的导论性教材主要介绍该领域的理论基础、基本方法和实用算法。
  • 单目计_Visual Odometry_
    优质
    简介:单目视觉里程计(Visual Odometry, VO)是一种通过分析从单一摄像头捕获的一系列图像来估计移动机器人或车辆位置与姿态变化的技术。它在计算摄影、自动驾驶及增强现实领域中发挥着关键作用,尤其适用于需要精确定位但成本敏感的应用场景。 单目视觉里程计(Monocular Visual Odometry, 简称Vo)是一种在计算机视觉领域广泛使用的技术,主要用于估算摄像头连续帧之间的运动变化。本项目重点关注的是基于OpenCV 3.1.0实现的单目视觉里程计算法类库。 该项目包括几个关键源文件:`visual_odometry.cpp`, `main.cpp`, 和 `pinhole_camera.cpp` 文件,以及相关的头文件如 `visual_odometry.h` 和 `pinhole_camera.h`. **视觉里程计**: 视觉里程计的主要任务是实时估计摄像头的六自由度位姿(即三维平移和旋转),通过分析连续图像中的特征来实现。它在机器人导航、自动驾驶车辆及无人机控制等领域有广泛应用。单目视觉里程计算法由于仅使用一个摄像头,存在无法直接获取深度信息的问题,因此算法设计需解决视差恢复与漂移等问题。 **OpenCV库**: OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和计算机视觉功能。在这个项目中,OpenCV用于处理图像数据、提取特征点并进行匹配及几何校正等操作,以实现视觉里程计的功能。 **`visual_odometry.cpph`:** 此文件是单目视觉里程计算法的核心代码所在位置。其中的 `visual_odometry.h` 文件定义了类,并可能包括初始化方法、特征检测与匹配方法、位姿估计和误差修正等功能声明;而 `visual_odometry.cpp` 则包含了这些功能的具体实现,通常涉及光流技术、特征点匹配算法以及利用RANSAC(随机样本一致)去除异常值的方法等。 **针孔相机模型 (`pinhole_camera.cpph`):** 这部分代码描述了计算机视觉中常用的针孔摄像机数学模型。它包含焦距、主点坐标和图像尺寸参数,用于将像素坐标转换为三维空间坐标或反之亦然,在视觉里程计计算过程中至关重要。 **`main.cpp`:** 这是项目的程序入口文件,负责读取视频流或图序列、实例化视觉里程计类并调用相应函数进行处理,并可能展示或记录结果。在这个文件中,用户需要提供输入数据路径设置参数以及定义输出格式等信息。 总结来说,该项目通过OpenCV库实现了单目视觉里程计算法的功能,利用连续图像帧来估算摄像头的运动变化。`visual_odometry.cpp` 和 `pinhole_camera.cpp` 文件分别封装了核心算法和相机模型实现细节;而 `main.cpp` 则是整个流程的主要驱动程序文件。此项目可以作为进一步研究与开发的基础,例如改进特征匹配策略、增加多传感器融合技术或应用于特定机器人系统等应用场景中。
  • 讲解机
    优质
    本课程深入浅出地介绍计算机视觉与机器视觉的基础理论和技术应用,涵盖图像处理、特征提取及识别等多个方面,旨在帮助学员掌握相关技术并应用于实际场景中。 计算机视觉是一门研究如何使计算机能够“看”的学科。“看”不仅意味着捕捉图像,更重要的是理解并解释这些图像内容的能力。其目标是从二维图像中恢复出三维信息,并生成语义化的描述。 这项技术的重要性体现在几个方面:首先,它有助于实现真正的人工智能;其次,它是信息科学领域中的重大挑战之一;最后,计算机视觉的发展将极大促进自然人机交互方式的进步。 计算机视觉的应用实例包括异常行为检测、步态识别、图像配准与融合和三维重建等。该技术不仅与其他学科如模式识别和人工智能密切相关,还通过心理物理学的研究成果来理解人类的视觉系统,进而建立更有效的模型。 Marr提出的视觉计算理论框架将视觉研究分为三个层次(计算理论层、表达算法层以及硬件实现层)及三个阶段(低级视知觉、中级视知觉与高级认知),这一结构为计算机视觉领域提供了重要的指导思路。尽管该框架存在一定的局限性,但它在过去几十年间对推动相关技术的发展起到了关键作用。 综上所述,计算机视觉不仅是一门深奥的技术科学,并且在实际应用中展现出巨大的潜力和价值。随着科技的进步,它将在更多领域发挥重要作用。
  • 经典计入门教
    优质
    本教程旨在为初学者提供经典视觉里程计技术的基础知识与实践指南,涵盖原理、算法实现及应用案例。 ### 视觉里程计经典入门教程知识点解析 #### 一、视觉里程计(VO)概述 “视觉里程计的经典入门教程”是苏黎世大学机器人与感知小组的Davide Scaramuzza教授撰写的一系列文章中的两篇,这两篇文章分别发表在IEEE Robotics and Automation Magazine上: - **第一部分**:《视觉里程计:第一部分——前三十年与基础》,2011年第四期。 - **第二部分**:《视觉里程计:第二部分——匹配、鲁棒性及应用》,2012年第一期。 这些文章旨在介绍视觉里程计的基本概念、发展历程以及最新的研究成果和技术进展。视觉里程计是一种通过分析车载相机拍摄的图像序列来估计移动载体位置的技术。 #### 二、视觉里程计的工作原理 视觉里程计(Visual Odometry, VO)是指通过分析图像序列或视频流中物体的变化来估计相机运动轨迹的过程。其基本流程包括: 1. **输入**:一系列图像或视频流,通常由安装在移动载体上的一个或多个相机捕获。 2. **处理步骤**: - **特征检测**:识别图像中的关键点。 - **特征匹配(跟踪)**:追踪这些特征在连续帧之间的变化。 - **运动估计**:基于特征的变化来估计相机的相对运动。 - **优化**:通过局部优化方法提高运动估计的准确性。 #### 三、视觉里程计的应用条件 为了使视觉里程计正常工作,环境需满足以下条件: - **充足的照明**:确保能够清晰地识别图像中的特征。 - **静态场景占主导地位**:减少移动物体对结果的影响。 - **足够的纹理**:有足够的细节让算法能够提取出明显的特征变化。 - **连续帧之间有足够的重叠**:确保可以追踪到特征点。 #### 四、视觉里程计的优势 相较于其他类型的里程计技术,如轮式里程计(wheel odometry),视觉里程计具有以下优势: - **不受轮滑影响**:即使在不平坦的地面上,视觉里程计也不受车轮打滑的影响。 - **更准确的位置估计**:相对位置误差通常在0.1%至2%之间,比轮式里程计更为精确。 - **多用途互补作用**:可以作为轮式里程计、全球定位系统(GPS)、惯性测量单元(IMU)和激光里程计等的补充。 - **适用于GPS受限环境**:例如水下和空中环境中,视觉里程计尤为重要。 #### 五、视觉里程计的局限性 尽管视觉里程计具有许多优点,但它也存在一些局限性: - **光照条件**:强光或暗光条件下可能无法正常工作。 - **缺乏纹理的环境**:如果环境中缺乏足够的纹理特征,则难以进行准确的特征匹配。 - **快速运动**:高速运动可能导致特征匹配困难,从而影响定位精度。 视觉里程计作为一种重要的移动载体定位技术,在机器人导航、无人驾驶车辆等领域有着广泛的应用前景。通过对上述内容的学习,我们可以了解到视觉里程计的基本原理、应用场景及其优势和局限性,这对于进一步研究和发展这一领域具有重要意义。
  • 优质
    机器视觉是一种利用计算机模拟人类视觉能力的技术,广泛应用于工业自动化、质量检测等领域,通过图像处理和分析实现物体识别、测量等功能。 ### 机器视觉与双目立体视觉在机器人导航中的应用 #### 一、机器视觉与双目立体视觉概览 机器视觉是指使用计算机或机器来解释和理解来自传感器的图像输入,通过图像处理及模式识别技术使设备能够“看懂”并分析其环境。其中,双目立体视觉是机器视觉的一个重要分支,它模仿人类双眼的工作原理,利用两台相机从不同视角捕捉同一场景,并计算出物体深度信息以构建三维空间模型。 #### 二、双目立体视觉在机器人导航中的优势与挑战 **优势:** 1. **隐蔽性高:** 双目视觉系统是一种被动式传感器,在执行特殊任务(如军事侦察)时,不会主动发射能量,从而提高了隐蔽性和安全性。 2. **灵活性和适应性:** 它可以根据环境条件灵活调整导航精度及实时性能,提供更定制化的解决方案。 3. **丰富的信息获取:** 双目视觉能提供更多关于物体深度、距离等细节的信息,帮助机器人更好地理解周围环境并做出准确决策。 **挑战:** 1. **计算延迟问题:** 处理双目立体图像通常需要复杂的算法和大量数据处理,可能造成系统响应时间较长。 2. **精确地图生成难度大:** 目前的技术还难以在保证精度的同时快速构建三维地图,这对机器人自主导航提出了技术挑战。 #### 三、关键技术 1. **数字图像获取:** 使用两个相机捕获环境的二维图像数据。 2. **噪声过滤与边缘分割:** 对采集到的数据进行预处理以提升质量,减少干扰因素并突出关键特征边界。 3. **特征提取和立体匹配:** 辨识出图像中的重要特征,并在两张图片间找到对应的点对,这是计算深度信息的基础步骤。 4. **生成深度图:** 根据上述的对应关系来确定每个像素的距离值,形成完整的深度地图。 5. **三维重建与表示方法:** 结合相机位置和深度数据构建环境模型,并采用合适的格式进行存储展示。 6. **导航算法设计:** 例如路径规划等技术,在已知的地图基础上寻找最优路线并绕开障碍物。 #### 四、研究重点及创新点 本项目关注于双目立体视觉系统的整体优化以及三维地图生成的改进。提出了一种基于任务需求和反馈机制简化处理流程的方法,以实现快速响应与导航精度之间的平衡;在构建3D模型方面,则通过深度图、原始图像对等多类型数据综合应用,采用特征反向匹配策略逐步完成点线面体转换过程,并加入坐标转换及错误校验环节确保最终地图的准确性和完整性。 #### 五、结论和未来展望 双目立体视觉在机器人导航中具有巨大潜力,特别是在未知环境中的自主探索能力和障碍物规避能力方面。然而为了克服实时性与精确建图方面的挑战,未来的科研工作需要进一步优化图像处理算法以提高效率,并开发出更高效的地图生成技术来满足日益增长的应用需求。随着人工智能和机器视觉领域的不断进步与发展,我们期待未来机器人将更加智能自主地适应复杂多变的环境条件,为人类社会带来更多的便利与价值。
  • SLAM十四讲】基于特征点的计.pdf
    优质
    《视觉SLAM十四讲》中的这一部分专注于讲解基于特征点的视觉里程计技术,为读者详细剖析了其工作原理及应用实践。 视觉SLAM十四讲;ORB特征点;G-N;Bundle Adjustment
  • Halcon子大全_所有子_机_HALCON_
    优质
    本专栏提供全面详尽的Halcon算子介绍与应用实例,涵盖所有核心功能,旨在为从事机器视觉、图像处理领域的工程师和研究人员提供高效学习资源。 免费分享Halcon所有算子,让众多学习者可以方便地了解机器视觉知识。