Advertisement

基于时间与空间特征,并利用RBF神经网络,对短时交通流量进行预测。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
针对实际交通流量的波动变化,该研究提出了一种方法,它充分考虑了交通流量的时空特性,并结合径向基本函数(RBF)神经网络进行短时交通流量预测。具体而言,该方法深入地挖掘并有效利用了交通流量时间序列中的周相似性和相关性,同时分析了相邻路段之间交通流量相互作用的各种影响因素。此外,它还巧妙地融合了RBF神经网络强大的自学习、自组织和自适应功能,以及其在大规模数据融合方面的卓越特性,从而对交通流量进行准确的短时预测。通过对该方法的仿真计算和详细分析进行了验证,实验结果表明,所提出的方法能够显著提升交通流量预测的精度。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RBF.pdf
    优质
    本文提出了一种结合时空特性的RBF(径向基函数)神经网络模型,用于提高短时交通流量预测的准确性。通过综合考虑时间序列和空间分布的影响因素,该方法能够有效捕捉交通系统的动态变化规律,并应用于实际案例中验证其优越性能。 本段落提出了一种基于交通流时空变化特性和RBF神经网络的短时预测方法。该方法充分考虑了实际交通流量动态性、周相似性和相关性的特点,并结合相邻路段间的影响因素进行分析。利用RBF神经网络的学习能力,自适应调整和大规模数据融合特性来提高交通流预测的准确性。通过实例仿真计算证明,这种方法能够有效提升短时交通流预测精度。
  • 小波序列
    优质
    本文提出了一种基于小波神经网络的方法,用于分析和预测短期交通流量的时间序列数据,旨在提升预测准确性和效率。 本代码主要利用MATLAB工具进行小波神经网络的时间序列预测仿真,实现短时交通流量预测的模拟。
  • 序列中的小波——.zip
    优质
    本研究探讨了利用小波神经网络进行时间序列分析的方法,并将其应用于短期交通流量预测。通过结合小波变换和人工神经网络的优点,模型能够有效捕捉数据中的非线性特征及周期变化模式,从而提高预测精度。研究成果为城市智能交通系统的优化提供了新的技术手段。 小波神经网络在时间序列预测中的应用——短时交通流量预测的MATLAB程序。
  • RBF代码
    优质
    本项目实现了一种基于径向基函数(RBF)神经网络的短期交通流量预测方法,并提供了完整的源代码。通过历史数据训练模型,以准确预测未来短时段内的交通流量变化趋势。 自己编写了利用RBF神经网络进行短期交通流预测的MATLAB源码。
  • BP的公模型.rar_BP__公_技术
    优质
    本研究提出了一种利用BP(Back Propagation)神经网络进行公交行程时间预测的方法。通过构建基于历史数据和实时信息的预测模型,优化了公共交通系统的调度和服务质量,提升了乘客出行体验。该方法在实际公交系统中具有广泛的应用前景。 在现代城市交通规划与管理过程中,准确预测公交车的行程时间是一项重要的任务,它直接影响到公共交通系统的效率和服务质量。本段落将探讨如何利用BP(Backpropagation)神经网络来实现这一目标。 BP神经网络是一种广泛应用的人工智能模型,主要用于解决非线性问题和进行预测分析。在公交行程时间预测中,该技术可以捕捉复杂的交通模式与影响因素,并提供较为精确的预测结果。 BP神经网络的核心原理在于通过反向传播算法调整权重参数,以使输出值尽可能接近真实情况。具体而言,在公交车程时间预测时,输入层包含了诸如出发时刻、始发站和终点站的位置信息、天气状况及道路条件等影响因素。这些数据经过编码后被送入神经网络的计算环节。 隐藏层是BP模型的关键组成部分之一,它由多个具有加权连接与非线性转换功能的节点组成。根据具体问题的不同复杂度,可适当调整这一层级中的单元数量和结构设置,并常采用Sigmoid或ReLU函数作为激活机制来增强网络的学习能力。 输出层则直接给出预测行程时间的结果。通过反向传播算法反复迭代优化各层之间的权重关系,以实现最小化误差的目标。此过程通常借助梯度下降方法完成训练任务。 实际应用中,需要收集大量公交运行数据集(如历史记录、站点信息、日期和天气情况等),用作模型的训练素材。在该过程中,会将原始资料随机分配为训练样本、验证子集及测试集合,并利用正则化技术防止过拟合现象的发生。 基于实际运行数据进行公交车程时间预测——以BP神经网络为例的研究表明,通过合理预处理和构建相应的机器学习模型,可以有效提升公共交通系统的运作效率。这包括对原始信息的清理加工、特征提取与选择、训练及优化算法设计以及最终结果评估等多个环节的工作内容。 总之,采用BP神经网络技术为公交行程时间预测提供了一种实用且有效的方案。它能够处理多维度输入数据,并适应交通环境的变化需求,从而有助于改善城市公共交通服务的质量和乘客体验水平。
  • BP序列(Python)
    优质
    本项目采用Python编程语言,运用BP(反向传播)神经网络算法对时间序列数据进行精准预测。通过调整模型参数优化预测效果,适用于各类时间序列分析场景。 基于BP神经网络的时间序列预测(Python)是一项利用人工神经网络技术进行数据预测的方法。这种方法通过训练一个具有多层结构的BP(Backpropagation)神经网络模型来捕捉时间序列中的复杂模式,从而实现对未来值的有效预测。 在使用Python语言实施这种预测时,通常会采用诸如NumPy、Pandas和Scikit-learn等库来进行数据处理与建模。此外,对于更高级的应用场景,则可能会涉及到TensorFlow或Keras框架以构建更为复杂的神经网络架构,以便于更好地适应时间序列分析中的非线性特征。 整个过程主要包括以下几个步骤: 1. 数据准备:收集历史数据并进行预处理(如归一化、缺失值填充等); 2. 模型搭建:定义BP神经网络的结构参数(例如隐藏层的数量和每个隐藏层内节点数目的设定),以及激活函数的选择; 3. 训练阶段:利用已有的时间序列信息对模型进行训练,通过反向传播算法不断调整权重以最小化预测误差; 4. 验证与测试:将一部分数据作为验证集或测试集来评估模型的泛化能力,并根据需要进一步优化参数设置。 通过以上步骤可以构建出一个基于BP神经网络的时间序列预测系统,在许多领域如金融分析、气象预报等方面具有广泛的应用前景。
  • 案例23 的小波序列分析.zip
    优质
    本案例探讨了短时交通流量预测的应用,采用小波神经网络对时间序列数据进行高效分析,为智能交通系统优化提供技术支持。 小波神经网络(Wavelet Neural Network, WNN)结合了小波分析与神经网络模型的优势,在时间序列预测领域有着广泛应用,尤其是在处理非线性、非平稳数据方面表现突出。本段落探讨的是短时交通流量的预测问题,这是一个具有实时性强和波动大特点的时间序列挑战。 WNN利用小波变换的优点对信号进行多分辨率分析,并能捕捉不同时间尺度上的特征变化。Morlet小波函数因其良好的局部化特性,在此案例中可能被采用以平衡时间和频率分辨率,尤其适用于处理周期性和非线性问题的场景。 文件`d_mymorlet.m` 和 `mymorlet.m` 可能用于实现Morlet小波变换,并对交通流量数据进行分析。而存储于`traffic_flux.mat`中的样本数据包括了不同时间点上的交通流量值,这些将作为训练和测试WNN的输入。 文件`wavenn.asv` 和 `wavenn.m` 分别代表了WNN实现的核心部分。“ASV”可能表示“Auto Scaling Variable”,用于自动调整网络参数以优化性能。在预测短时交通流量的过程中,通常会经历以下步骤: 1. 数据预处理:使用小波变换提取原始数据的特征信息。 2. 网络构建:设计并建立WNN模型包括输入层、隐藏层和输出层,并利用隐藏节点的小波系数来捕捉不同尺度的信息。 3. 训练过程:通过优化算法(如梯度下降或Levenberg-Marquardt)调整网络参数,使预测结果接近实际值。 4. 预测与评估:基于训练好的模型对未来交通流量进行预测,并利用误差指标(例如均方误差和平均绝对误差)来评价预测效果。 综上所述,本段落中使用的小波神经网络方法通过结合小波分析和神经网络技术,在解决短时交通流量的非线性、非平稳特性方面提供了一种有效的解决方案。通过对提供的代码进行运行,我们可以深入了解具体的小波函数实现细节、WNN结构以及训练流程,并进一步理解其在时间序列预测中的应用价值。
  • 模型】BP的Matlab代码.zip
    优质
    本资源提供基于BP(Back Propagation)神经网络算法实现短时交通流量预测的MATLAB代码。通过优化网络结构和参数,有效提升了交通流短期预测精度,适用于智能交通系统的研究与开发。 智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划以及无人机等多种领域的Matlab仿真代码。
  • 中的小波.zip_小波_小波分析__模型
    优质
    本研究探讨了基于小波神经网络的交通流短期预测方法,结合小波分析与神经网络技术,旨在提高短时交通流量预测精度。 本段落提出了一种基于小波神经网络的短时交通流量预测模型。由于短时交通流量具有随机性和非线性特征,这使得传统预测方法难以准确捕捉其变化规律,并且传统的神经网络容易陷入局部最优解,导致泛化能力较差,从而影响了预测精度。 相比之下,小波神经网络能够对这些复杂特性进行有效的局部分析和非线性建模。通过实验验证,该模型显著提高了短时交通流量的预测准确性,显示出更强的应用价值。
  • 混合化算法的序列RBF
    优质
    本研究提出了一种结合混合进化算法优化参数的RBF神经网络模型,用于高效准确地进行时间序列预测。 本段落提出了一种基于梯度下降法的混合进化算法来确定径向基函数(RBF)神经网络结构并优化其参数。在该进化算法中,我们嵌入了梯度下降算子,并对每一代中的若干个精英个体以一定概率采用梯度下降法进行搜索,从而增强算法的局部搜索能力。利用混合进化算法同时训练和优化RBF网络结构及参数,并对节点数与参数进行了混合编码。通过仿真实验表明,该RBF网络具有较强的泛化能力。